ω-Petri Nets

  • Gilles Geeraerts
  • Alexander Heussner
  • M. Praveen
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7927)

Abstract

We introduce ω-Petri nets (ωPN), an extension of plain Petri nets with ω-labeled input and output arcs, that is well-suited to analyse parametric concurrent systems with dynamic thread creation. Most techniques (such as the Karp and Miller tree or the Rackoff technique) that have been proposed in the setting of plain Petri nets do not apply directly to ωPN because ωPN define transition systems that have infinite branching. This motivates a thorough analysis of the computational aspects of ωPN. We show that an ωPN can be turned into a plain Petri net that allows to recover the reachability set of the ωPN, but that does not preserve termination. This yields complexity bounds for the reachability, (place) boundedness and coverability problems on ωPN. We provide a practical algorithm to compute a coverability set of the ωPN and to decide termination by adapting the classical Karp and Miller tree construction. We also adapt the Rackoff technique to ωPN, to obtain the exact complexity of the termination problem. Finally, we consider the extension of ωPN with reset and transfer arcs, and show how this extension impacts the decidability and complexity of the aforementioned problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-state Systems. In: LICS 1996. IEEE (1996)Google Scholar
  2. 2.
    Borosh, I., Treybig, L.: Bounds on positive integral solutions of linear diophantine equations. Proceedings of the American Mathematical Society 55(2), 299–304 (1976)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the Automated Verification of Multithreaded Java Programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 173–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Delzano, G.: Constraint-Based Verification of Parameterized Cache Coherence Protocols. FMSD 23(3) (2003)Google Scholar
  6. 6.
    Dufourd, C.: Réseaux de Petri avec reset/transfert: Décidabilité et indécidabilité. PhD thesis, ENS de Cachan (1998)Google Scholar
  7. 7.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of reset P/T nets. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 301–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols. In: LICS 1999. IEEE (1999)Google Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS 256(1-2), 63–92 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing Petri net extensions. Inf. Comput. 195(1-2), 1–29 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Geeraerts, G., Heußner, A., Raskin, J.F.: Queue-Dispatch Asynchronous Systems. In: To appear in the Proceedings of ACSD. IEEE (2013), http://arxiv.org/abs/1201.4871
  13. 13.
    Geeraerts, G., Heußner, A., Praveen, M., Raskin, J.F.: ω-Petri nets ArXiV.org CoRR abs/1301.6572 (2013), http://arxiv.org/abs/1301.6572
  14. 14.
    Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check: New algorithms for the coverability problem of wsts. J. Comput. Syst. Sci. 72(1) (2006)Google Scholar
  15. 15.
    German, S., Sistla, A.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Karp, R.M., Miller, R.E.: Parallel Program Schemata. JCSS 3, 147–195 (1969)MathSciNetMATHGoogle Scholar
  17. 17.
    Lipton, R.: The reachability problem requires exponential space. Tech. Report. Yale University (1963)Google Scholar
  18. 18.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. of Computing 3(13), 441–460 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut fur Instrumentelle Mathematik, Bonn (1962)Google Scholar
  20. 20.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. TCS 6, 223–231 (1978)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Reisig, W.: Petri Nets: An Introduction. Springer (1985)Google Scholar
  22. 22.
    Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gilles Geeraerts
    • 1
  • Alexander Heussner
    • 2
  • M. Praveen
    • 3
  • Jean-François Raskin
    • 1
  1. 1.Université Libre de Bruxelles (ULB)Belgium
  2. 2.Otto-Friedrich Universität BambergGermany
  3. 3.Laboratoire Spécification et VérificationENS CachanFrance

Personalised recommendations