Contextual Merged Processes

  • César Rodríguez
  • Stefan Schwoon
  • Victor Khomenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7927)


We integrate two compact data structures for representing state spaces of Petri nets: merged processes and contextual prefixes. The resulting data structure, called contextual merged processes (CMP), combines the advantages of the original ones and copes with several important sources of state space explosion: concurrency, sequences of choices, and concurrent read accesses to shared resources. In particular, we demonstrate on a number of benchmarks that CMPs are more compact than either of the original data structures. Moreover, we sketch a polynomial (in the CMP size) encoding into SAT of the model-checking problem for reachability properties.


Model Check Reachability Graph Merge Process Asynchronous Circuit Occurrence Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theo. Comp. Sci. 449, 2–22 (2012)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B., Schwoon, S.: McMillan’s complete prefix for contextual nets. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.) ToPNoC I, LNCS, vol. 5100, pp. 199–220. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures, and processes. Inf. Comput. 171(1), 1–49 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Corbett, J.C.: Evaluating deadlock detection methods for concurrent software. IEEE Transactions on Software Engineering 22, 161–180 (1996)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)CrossRefGoogle Scholar
  6. 6.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods in System Design 20, 285–310 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Heljanko, K.: Deadlock and reachability checking with finite complete prefixes. Licentiate’s thesis, Helsinki University of Technology (1999)Google Scholar
  8. 8.
    Heljanko, K.: Minimizing finite complete prefixes. In: Proc. CS&P, pp. 83–95 (1999)Google Scholar
  9. 9.
    Janicki, R., Koutny, M.: Invariant semantics of nets with inhibitor arcs. In: Groote, J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 317–331. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decidability of CFL-reachability for threads communicating via locks. In: Proc. LICS, pp. 27–36 (2009)Google Scholar
  11. 11.
    Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. Ph.D. thesis, School of Computing Science, Newcastle University (2003)Google Scholar
  12. 12.
    Khomenko, V., Mokhov, A.: An algorithm for direct construction of complete merged processes. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes – a new condensed representation of Petri net behaviour. Act. Inf. 43(5), 307–330 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Montanari, U., Rossi, F.: Contextual occurrence nets and concurrent constraint programming. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 280–295. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2QBF algorithms. In: Proc. SAT (2004)Google Scholar
  18. 18.
    Ristori, G.: Modelling Systems with Shared Resources via Petri Nets. Ph.D. thesis, Department of Computer Science, University of Pisa (1994)Google Scholar
  19. 19.
  20. 20.
    Rodríguez, C., Schwoon, S.: Verification of Petri Nets with Read Arcs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 471–485. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Rodríguez, C., Schwoon, S., Baldan, P.: Efficient contextual unfolding. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 342–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Rodríguez, C., Schwoon, S., Khomenko, V.: Contextual merged processes. Tech. Rep. LSV-13-06, LSV, ENS de Cachan (2013)Google Scholar
  23. 23.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 501–516. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • César Rodríguez
    • 1
  • Stefan Schwoon
    • 1
  • Victor Khomenko
    • 2
  1. 1.LSV, ENS Cachan & CNRS, INRIA SaclayFrance
  2. 2.School of Computing ScienceNewcastle UniversityU.K.

Personalised recommendations