Advertisement

Discovering Block-Structured Process Models from Event Logs - A Constructive Approach

  • Sander J. J. Leemans
  • Dirk Fahland
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7927)

Abstract

Process discovery is the problem of, given a log of observed behaviour, finding a process model that ‘best’ describes this behaviour. A large variety of process discovery algorithms has been proposed. However, no existing algorithm guarantees to return a fitting model (i.e., able to reproduce all observed behaviour) that is sound (free of deadlocks and other anomalies) in finite time. We present an extensible framework to discover from any given log a set of block-structured process models that are sound and fit the observed behaviour. In addition we characterise the minimal information required in the log to rediscover a particular process model. We then provide a polynomial-time algorithm for discovering a sound, fitting, block-structured model from any given log; we give sufficient conditions on the log for which our algorithm returns a model that is language-equivalent to the process model underlying the log, including unseen behaviour. The technique is implemented in a prototypical tool.

Keywords

process discovery block-structured process models soundness fitness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  3. 3.
    van der Aalst, W., Buijs, J., van Dongen, B.: Towards improving the representational bias of process mining. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. Lecture Notes in Business Information Processing, vol. 116, pp. 39–54. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    Badouel, E.: On the α-reconstructibility of workflow nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 128–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from term based representations of infinite partial languages. Fundam. Inform. 95(1), 187–217 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process trees. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  10. 10.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P., et al.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: Overview and outlook of Petri net discovery algorithms. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II, LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: Instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)CrossRefGoogle Scholar
  16. 16.
    Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining–adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models from event logs - a constructive approach. Tech. Rep. BPM-13-06, Eindhoven University of Technology (April 2013)Google Scholar
  19. 19.
    de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal structuring of acyclic process models. The Computer Journal (2012), http://comjnl.oxfordjournals.org/content/early/2012/09/19/comjnl.bxs126.abstract
  21. 21.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Reisig, W., Schnupp, P., Muchnick, S.: Primer in Petri Net Design. Springer-Verlag New York, Inc. (1992)Google Scholar
  23. 23.
    Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006)Google Scholar
  25. 25.
    Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 358–365. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations