Hierarchical Conformance Checking of Process Models Based on Event Logs

  • Jorge Munoz-Gama
  • Josep Carmona
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7927)


Process mining techniques aim to extract knowledge from event logs. Conformance checking is one of the hard problems in process mining: it aims to diagnose and quantify the mismatch between observed and modeled behavior. Precise conformance checking implies solving complex optimization problems and is therefore computationally challenging for real-life event logs. In this paper a technique to apply hierarchical conformance checking is presented, based on a state-of-the-art algorithm for deriving the subprocesses structure underlying a process model. Hierarchical conformance checking allows us to decompose problems that would otherwise be intractable. Moreover, users can navigate through conformance results and zoom into parts of the model that have a poor conformance. The technique has been implemented as a ProM plugin and an experimental evaluation showing the significance of the approach is provided.


Process Mining Conformance Checking Process Diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (May 2011)Google Scholar
  2. 2.
    Rogers, S.: Big data is scaling BI and analytics-data growth is about to accelerate exponentially. Information and Management - Brookfield 21(5), 14 (2011)Google Scholar
  3. 3.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  4. 4.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: EDOC, pp. 55–64. IEEE Computer Society (2011)Google Scholar
  5. 5.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking. International Journal of Innovative Computing, Information and Control (IJICIC) 8(7B), 5317–5339 (2012)Google Scholar
  7. 7.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    van der Aalst, W.M.P.: Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach. Technical Report BPM-12-20, BPM Center (September 2012)Google Scholar
  10. 10.
    Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam (2012)Google Scholar
  11. 11.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place or transition net systems. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance checking. In: Caillaud, B., Carmona, J., Hiraishi, K. (eds.) ACSD, pp. 57–66. IEEE (2011)Google Scholar
  15. 15.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. Formal Asp. Comput. 23(3), 333–363 (2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology 8(2), 147–176 (1999)CrossRefGoogle Scholar
  17. 17.
    Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Multi-Dimensional Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-Life Event Logs. Information Systems 37(7), 654–676 (2012)CrossRefGoogle Scholar
  18. 18.
    Burattin, A., Sperduti, A.: PLG: A framework for the generation of business process models and their execution logs. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge Munoz-Gama
    • 1
  • Josep Carmona
    • 1
  • Wil M. P. van der Aalst
    • 2
  1. 1.Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations