Advertisement

Diffusion Methods for Wind Power Ramp Detection

  • Ángela Fernández
  • Carlos M. Alaíz
  • Ana M. González
  • Julia Díaz
  • José R. Dorronsoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7902)

Abstract

The prediction and management of wind power ramps is currently receiving large attention as it is a crucial issue for both system operators and wind farm managers. However, this is still an issue far from being solved and in this work we will address it as a classification problem working with delay vectors of the wind power time series and applying local Mahalanobis K-NN search with metrics derived from Anisotropic Diffusion methods. The resulting procedures clearly outperform a random baseline method and yield good sensitivity but more work is needed to improve on specificity and, hence, precision.

Keywords

Diffusion Methods Anisotropic Diffusion diffusion distance wind power ramps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H.: Assessing the Accuracy of Prediction Algorithms for Classification: An Overview. Bioinformatics 16, 412–424 (2000)CrossRefGoogle Scholar
  2. 2.
    Belkin, M., Nyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bossavy, A., Girard, R., Kariniotakis, G.: Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 16(1), 51–63 (2013)CrossRefGoogle Scholar
  4. 4.
    Bradford, K., Carpenter, R., Shaw, B.: Forecasting southern plains wind ramp events using the wrf model at 3-km. In: Proceedings of the AMS Student Conference, Atlanta, Georgia (2010)Google Scholar
  5. 5.
    Coifman, R., Lafon, S.: Diffusion Maps. Applied and Computational Harmonic Analysis 21(1), 5–30 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Ferreira, C., Gama, J., Matias, L., Botterud, A., Wang, J.: A survey on wind power ramp forecasting. Technical report, Argonne National Laboratory (February 2011)Google Scholar
  7. 7.
    Greaves, B., Collins, J., Parkes, J., Tindal, A.: Temporal forecast uncertainty for ramp events. Wind Engineering 33(4), 309–319 (2009)CrossRefGoogle Scholar
  8. 8.
    Kamath, C.: Associating weather conditions with ramp events in wind power generation. In: 2011 IEEE/PES Power Systems Conference and Exposition (PSCE), pp. 1–8 (March 2011)Google Scholar
  9. 9.
    Singer, A., Coifman, R.: Non-linear independent component analysis with Diffusion Maps. Applied and Computational Harmonic Analysis 25(2), 226–239 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Szlam, A., Maggioni, M., Coifman, R.: Regularization on graphs with function–adapted diffusion processes. Journal of Machine Learning Research 9, 1711–1739 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Zheng, H., Kusiak, A.: Prediction of wind farm power ramp rates: A data-mining approach. Journal of Solar Energy Engineering 131(3), 031011-1–31011-8 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ángela Fernández
    • 1
  • Carlos M. Alaíz
    • 1
  • Ana M. González
    • 1
  • Julia Díaz
    • 1
  • José R. Dorronsoro
    • 1
  1. 1.Departamento de Ingeniería Informática and Instituto de Ingeniería del ConocimientoUniversidad Autónoma de MadridMadridSpain

Personalised recommendations