Sleep Stage Classification Using Advanced Intelligent Methods

  • José Manuel Sánchez Pascualvaca
  • Carlos Fernandes
  • Alberto Guillén
  • Antonio M. Mora
  • Rogerio Largo
  • Agostinho C. Rosa
  • Luis Javier Herrera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7902)

Abstract

Manual sleep stage classification is a tedious process that takes a lot of time to sleep experts performing data analysis or studies on this field. Moreover errors and inconsistencies between classifications of the same data are frequent. Due to this, there is a great need of automatic classification systems to support reliable classification. This work extends the work by Herrera et al. (International Journal of Neural Systems 10.1142/S0129065713500123), inspecting the use of two techniques to improve the accuracy of sleep stage classifiers based on support vector machines from electroencephalogram, electrooculogram and electromyogram signals. Moreover, three different support vector machine multi-classifiers have been tested to evaluate and compare their performance. To accomplish these tasks, three different feature extraction techniques are applied to the electroencephalogram signals. First, the joint use of these feature sets, together with the electrooculogram and electromyogram information, is inspected (and compared with the use of each feature extraction method separately). Second the possibility of using nearby stages information to predict the current stage is inspected. Results obtained show significant improvements in the classification rates achieved using the two proposed techniques.

Keywords

SVM Multi-classification EEG Feature Extraction Sleep stage classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, Ser. National Institutes of Health (U.S.). Bethesda, Md: U.S. National Institute of Neurological Diseases and Blindness. Neurological Information Network 204 (1968)Google Scholar
  2. 2.
    Norman, R., Pal, I., Stewart, C., Walsleben, J., Rappaport, D.: Interobserver Agreement Among Sleep Scorers From Different Centers in a Large Dataset. Sleep 23, 901–908 (2000)Google Scholar
  3. 3.
    Hjorth, B.: EEG Analysis Based on Time Domain Properties. Electroencephalography and Clinical Neurophysiology 29, 306–310 (1970)CrossRefGoogle Scholar
  4. 4.
    Van Hese, P., Philips, W., De Koninck, J., Van de Walle, R., Lemahieu, I.: Automatic Detection of Sleep Stages Using the EEG. In: 23th Annual IEEE/EMBS Conference (October 2001)Google Scholar
  5. 5.
    Görür, D., Halici, U., Aydin, H., Ongun, G., Ozgen, F., Leblebicioglu, K.: Sleep Spindles Detection Using Short Time Fourier Transform and Neural Networks. IEEE 2, 1631–1636 (2002)Google Scholar
  6. 6.
    Mora, A.M., Fernandes, C.M., Herrera, L.J., Castillo, P.A., Rosa, A.C.: Automatic Sleep Classification Procedure Using Wavelet Based Feature Extraction. In: Proceedings of the 2010 International Conference on Metaheuristics and Nature Inspired Computing, METAheuristics (2010)Google Scholar
  7. 7.
    Jo, H.G., Park, J.Y., Lee, C.K., An, S.K., Yoo, S.K.: Genetic Fuzzy Classifier for Sleep Stage Identification. Comp. in Biol. and Med. Elseiver 40, 629–634 (2010)CrossRefGoogle Scholar
  8. 8.
    Heiss, J.E., Held, C.M., Estevez, P.A., Perez, C.A., Holzmann, C.A., Perez, J.P.: Classification of sleep stages in infants: a neuro fuzzy approach. Engineering in Medicine and Biology Magazine 21(5), 147–151 (2002)CrossRefGoogle Scholar
  9. 9.
    Gunes, S., Polat, K., Yosunkaya, S.: Efficient Sleep Stage Recognition System Based on EEG Signal Using k-Means Clustering Based Feature Weighting. Expert Systems With Applications (2010)Google Scholar
  10. 10.
    Tagluk, M.E., Sezgin, N., Akin, M.: Estimation of Sleep Stages by an Artificial Neural Network Employing EEG, EMG and EOG. J. Med. Syst. (2009)Google Scholar
  11. 11.
    Herrera, L.J., Mora, A.M., Fernandes, C., Migotina, D., Guillén, A., Rosa, A.C.: Symbolic Representation of the EEG for sleep stage classification. In: 11th International Conference on Intelligent Systems Design and Applications (ISDA) (2011)Google Scholar
  12. 12.
    Huang, L., Sun, O., Cheng, J.: Novel Method of Fast Automated Discrimination of Seep Stages. In: Annual International Conference of the IEEE EMBS, Mexico, September 17-21 (2003)Google Scholar
  13. 13.
    Migotina, D., Rosa, A.: Segmentation of Sleep EEG Signal by Optimal Thresholds. In: Proc. Bio. Med. 2012, Austria, pp. 114–121 (February 2012)Google Scholar
  14. 14.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press (1998)Google Scholar
  15. 15.
    Hjorth, B.: Time domain descriptors and their relation to a particular model for generation of eeg activity. CEAN -Computerized EEG Analysis, 3–8 (1975)Google Scholar
  16. 16.
    Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar
  17. 17.
    Takahashi, F., Abe, S.: Decision-tree-based multiclass support vector machines. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 3, pp. 1418–1422 (2002)Google Scholar
  18. 18.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  19. 19.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification (2003-2010)Google Scholar
  20. 20.
    Herrera, L.J., Fernandes, C.M., Mora, A.M., Migotina, D., Largo, R., Guillen, A., Rosa, A.C.: Combination of Heterogeneous EEG Feature Extraction Methods and Stacked Sequential Learning for Sleep Stage Classification. International Journal of Neural Systems, doi:10.1142/S0129065713500123Google Scholar
  21. 21.
    Gatta, C., Puertas, E., Pujol, O.: Multi-scale stacked sequential learning. Pattern Recognition 44(10-11), 2414–2426 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José Manuel Sánchez Pascualvaca
    • 1
  • Carlos Fernandes
    • 1
    • 2
  • Alberto Guillén
    • 1
  • Antonio M. Mora
    • 1
  • Rogerio Largo
    • 2
  • Agostinho C. Rosa
    • 2
  • Luis Javier Herrera
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversity of GranadaGranadaSpain
  2. 2.ISR-ISTLaseebLisbonPortugal

Personalised recommendations