Self-regulating Neurons in the Sensorimotor Loop

  • Frank Pasemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7902)


Synaptic plasticity for recurrent neural networks is derived by introducing neurons as self-regulating units. These neurons have homeostatic properties for certain parameter domains. Depending on its underlying connectivity a neurocontroller endowed with the derived synaptic plasticity rule can generate a variety of different behaviors. The structure of these networks can be developed by evolutionary techniques. For demonstration, examples are given generating a walking behavior for a 3-joint single leg of a walking machine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, G.W., Bezprozvanny, I.: Maintaining the stability of neural function: a homeostatic hypothesis. Annual Review Physiology 63, 847–869 (2001)CrossRefGoogle Scholar
  2. 2.
    Di Paolo, E.A.: Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In: Paris, J.-A., Meyer, A., Berthoz, D., Floreano, H. (eds.) From Animals to Animals, Proc. of the Sixth International Conference on the Simulation of Adaptive Behavior, SAB 2000, pp. 440–449. MIT Press (2000)Google Scholar
  3. 3.
    Hoinville, T., Tapia, C., Hénaff, P.: Flexible and Stable Pattern Generation by Evolving Constrained Plastic Neurocontrollers. Adaptive Behavior 19, 187–207 (2011)CrossRefGoogle Scholar
  4. 4.
    Hülse, M., Pasemann, F.: Dynamical neural schmitt trigger for robot control. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 783–788. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Rempis, C.W., Toutounji, H., Pasemann, F.: Controlling the Learning of Behaviors in the Sensorimotor Loop with Neuromodulators in Self-Monitoring Neural Networks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (to be published 2013)Google Scholar
  6. 6.
    Triesch, J.: Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation 19, 885–909 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Turrigiano, G.G.: The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 411–435 (2008)CrossRefGoogle Scholar
  8. 8.
    von Twickel, A., Pasemann, F.: Reflex-oscillations in evolved single leg neurocontrollers for walking machines. Natural Computing 6, 311–337 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    von Twickel, A., Hild, M., Siedel, T., Patel, V., Pasemann, F.: Neural control of a modular multi-legged walking machine: Simulation and hardware. Robotics and Autonomous Systems 60, 227–241 (2012)CrossRefGoogle Scholar
  10. 10.
    Vargas, P.A., Moioli, R.C., de Castro, L.N., Timmis, J., Neal, M., Von Zuben, F.J.: Artificial homeostatic system: a novel approach. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 754–764. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Williams, H., Noble, J.: Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks. Biosystems 87, 252–259 (2007)CrossRefGoogle Scholar
  12. 12.
    Zahedi, K., Pasemann, F.: Adaptive behavior control with self-regulating neurons. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of AI, Festschrift. LNCS (LNAI), vol. 4850, pp. 196–205. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frank Pasemann
    • 1
  1. 1.Institute of Cognitive ScienceUniversity of OsnabrückGermany

Personalised recommendations