Advertisement

Automatic Fish Segmentation on Vertical Slot Fishways Using SOM Neural Networks

  • Álvaro Rodriguez
  • Juan R. Rabuñal
  • María Bermúdez
  • Alejandro Pazos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7902)

Abstract

Vertical slot fishways are hydraulic structures which allow the upstream migration of fish through obstructions in rivers. The appropriate design of these should consider the behavior and biological variables of the target fish species and currently existing mechanisms to measure the behavior of the fish in these assays, such as direct observation or placement of sensors on the specimens, are impractical or unduly affect the animal behavior.

This paper studies the application of Artificial Neural Networks to the problem of automatic fish segmentation in vertical slot fishways. In particular, SOM Neural Networks have been used to detect fishes using visual information sampled by an underwater camera system. A ground true dataset was designed with experts and different approaches were tested providing promising results.

Keywords

ANN Fish-Detection Segmentation SOM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puertas, J., Pena, L., Teijeiro, T.: An Experimental Approach to the Hydraulics of Vertical Slot Fishways. Journal of Hydraulics Engineering 130 (2004)Google Scholar
  2. 2.
    Rajaratnam, N., Van der Vinne, G., Katopodis, C.: Hydraulics of Vertical Slot Fishways. Journal of Hydraulic Engineering 112, 909–927 (1986)CrossRefGoogle Scholar
  3. 3.
    Tarrade, L., Texier, A., David, L.: Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 609, 177–188 (2008)CrossRefGoogle Scholar
  4. 4.
    Wu, S., Rajaratma, N., Katopodis, C.: Structure of flow in vertical slot fishways. Journal of Hydraulic Engineering 125, 351–360 (1999)CrossRefGoogle Scholar
  5. 5.
    Dewar, H., Graham, J.: Studies of tropical tuna swimming performance in a large water tunnel– Energetics. Journal of Experimental Biology 192, 13–31 (1994)Google Scholar
  6. 6.
    Blake, R.W.: Fish functional design and swimming performance. Journal of Fish Biology 65, 1193–1222 (2004)CrossRefGoogle Scholar
  7. 7.
    Duarte, S., Reig, L., Oca, J., Flos, R.: Computerized imaging techniques for fish tracking in behavioral studies. presented at the European Aquaculture Society (2004)Google Scholar
  8. 8.
    Chambah, M., Semani, D., Renouf, A., Courtellemont, P., Rizzi, A.: Underwater color constancy enhancement of automatic live fish recognition. presented at the IS&T Electronic Imaging (SPIE), California, USA (2004)Google Scholar
  9. 9.
    Petrell, R.J., Shi, X., Ward, R.K., Naiberg, A., Savage, C.R.: Determining fish size and swimming speed in cages and tanks using simple video techniques. Aquacultural Engineering 16, 63–84 (1997)CrossRefGoogle Scholar
  10. 10.
    Morais, E.F., Campos, M.F.M., Padua, F.L.C., Carceroni, R.L.: Particle filter-based predictive tracking for robust fish count. presented at the Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI) (2005)Google Scholar
  11. 11.
    Clausen, S., Greiner, K., Andersen, O., Lie, K.-A., Schulerud, H., Kavli, T.: Automatic segmentation of overlapping fish using shape priors. presented at the Scandinavian Conference on Image Analysis (2007)Google Scholar
  12. 12.
    Chuang, M.-C., Hwang, J.-N., Williams, K., Towler, R.: Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems. presented at the IEEE International Conference on Image Processing) (ICIP) (2011)Google Scholar
  13. 13.
    Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.: Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. presented at the Int. Conf. on Computer Vision Theory and Applications (VISAPP) (2008)Google Scholar
  14. 14.
    Lines, J.A., Tillett, R.D., Ross, L.G., Chan, D., Hockaday, S., McFarlane, N.J.B.: An automatic image-based system for estimating the mass of free-swimming fish. Computers and Electronics in Agriculture 31, 151–168 (2001)CrossRefGoogle Scholar
  15. 15.
    Rodriguez, A., Bermudez, M., Rabuñal, J.R., Puertas, J., Dorado, J., Balairon, L.: Optical Fish Trajectory Measurement in Fishways through Computer Vision and Artificial Neural Networks. Journal of Computing in Civil Engineering 25, 291–301 (2011)CrossRefGoogle Scholar
  16. 16.
    Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys 38 (2006)Google Scholar
  17. 17.
    Verikas, A., Malmqvist, K., Bergman, L.: Color image segmentation by modular neural networks. Pattern Recognition Letters 18, 173–185 (1997)CrossRefGoogle Scholar
  18. 18.
    Dong, G., Xie, M.: Color clustering and learning for image segmentation based on neural networks. IEEE Transactions on Neural Networks 16, 925–936 (2005)CrossRefGoogle Scholar
  19. 19.
    Egmont-Petersen, M., Ridder, D., Handels, H.: Image processing with neural networks-a review. Pattern Recognition 35, 2279–2301 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Cristea, P.: Application of Neural Networks In Image Processing and Visualization. In: Amicis, R., Stojanovic, R., Conti, G. (eds.) GeoSpatial Visual Analytics, pp. 59–71. Springer, Netherlands (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Álvaro Rodriguez
    • 1
  • Juan R. Rabuñal
    • 2
  • María Bermúdez
    • 3
  • Alejandro Pazos
    • 1
  1. 1.Dept. of Information and Communications Technologies, Faculty of InformaticsUniversity of A CoruñaA CoruñaSpain
  2. 2.Center of Technological Innovation in Construction and Civil Engineering (CITEEC)University of A CoruñaA CoruñaSpain
  3. 3.Dept. of Hydraulic Engineering, ETSECCPUniversity of A CoruñaA CoruñaSpain

Personalised recommendations