A Genetic Algorithms-Based Approach for Optimizing Similarity Aggregation in Ontology Matching

  • Marcos Martínez-Romero
  • José Manuel Vázquez-Naya
  • Francisco Javier Nóvoa
  • Guillermo Vázquez
  • Javier Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7902)


Ontology matching consists of finding the semantic relations between different ontologies and is widely recognized as an essential process to achieve an adequate interoperability between people, systems or organizations that use different, overlapping ontologies to represent the same knowledge. There are several techniques to measure the semantic similarity of elements from separate ontologies, which must be adequately combined in order to obtain precise and complete results. Nevertheless, combining multiple similarity measures into a single metric is a complex problem, which has been traditionally solved using weights determined manually by an expert, or through general methods that do not provide optimal results. In this paper, a genetic algorithms based approach to aggregate different similarity metrics into a single function is presented. Starting from an initial population of individuals, each one representing a combination of similarity measures, our approach allows to find the combination that provides the optimal matching quality.


genetic algorithms ontology matching ontologies Semantic Web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bemers-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284, 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Staab, S., Studer, R.: Handbook on ontologies. Springer (2009)Google Scholar
  3. 3.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  4. 4.
    Gomez-Perez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer (2004)Google Scholar
  5. 5.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges (2012)Google Scholar
  6. 6.
    Martínez-Romero, M., Vázquez-Naya, J.M., Pereira, J., Ezquerra, N.: Ontology alignment techniques. Encyclopedia of Artificial Intelligence 3, 1290–1295 (2008)CrossRefGoogle Scholar
  7. 7.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge Engineering Review 18, 1–31 (2003)CrossRefGoogle Scholar
  8. 8.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data Semantics IV, 146–171 (2005)Google Scholar
  9. 9.
    Qazvinian, V., Abolhassani, H., Haeri, S.H., Hariri, B.B.: Evolutionary coincidence-based ontology mapping extraction. Expert Systems 25, 221–236 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Ding, Z., Jiang, C.: GAOM: genetic algorithm based ontology matching. In: IEEE Asia-Pacific Conference on Services Computing, APSCC 2006, pp. 617–620. IEEE (2006)Google Scholar
  11. 11.
    Rijsbergen, C.J.: Information Retrieval. Butterworth (1979, 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcos Martínez-Romero
    • 1
  • José Manuel Vázquez-Naya
    • 2
  • Francisco Javier Nóvoa
    • 2
  • Guillermo Vázquez
    • 3
  • Javier Pereira
    • 1
  1. 1.IMEDIR CenterUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Information and Communication Technologies, Computer Science FacultyUniversity of A CoruñaA CoruñaSpain
  3. 3.Institute of Biomedical Research of A Coruña (INIBIC)Xubias de Arriba 84, Hospital Materno Infantil (1a planta)A CoruñaSpain

Personalised recommendations