Neural Spike Activation in Hippocampal Cultures Using Hebbian Electrical Stimulation

  • V. Lorente
  • José Manuel Ferrández-Vicente
  • Fco. Javier Garrigós-Guerrero
  • Félix de la Paz López
  • José Manuel Cuadra-Troncoso
  • José Ramón Alvarez-Sanchez
  • Eduardo Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

Electric stimulation has been widely used to induce changes in neuronal cultures coupled to microelectrode arrays (MEAs). In this paper, we used different electrical stimulation protocols on dissociated cultures of hippocampal cells for studying the electrical properties of the process. We show that persistent and synchronous stimulation of adjacent electrodes may be used for creating adjacent physical or logical connections in the connectivity graph following Hebb’s Law modifying the neural responses principal parameters.

Keywords

Cultured neural network Hebbian Law induced plasticity learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.A., Rosenfeld, E.: Neurocomputing: Foundations of research. MIT Press (1988)Google Scholar
  2. 2.
    Bologna, L.L., Nieus, T., Tedesco, M., Chiappalone, M., Benfenati, F.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165, 692–704Google Scholar
  3. 3.
    Braitenberg, V.: Vehicles: experiments in synthetic psychology. MIT Press (1986)Google Scholar
  4. 4.
    Chao, Z.S., Bakkum, D.J., Potter, S.M.: Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (cat) with other statistics. J. Neural. Eng. 4(3), 294–308 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ide, A.N., Andruska, A., Boehler, M., Wheeler, B.C., Brewer, G.J.: Chronic network stimulation enhances evoked action potentials. J. Neural. Eng. 7(1) (February 2010)Google Scholar
  6. 6.
    Stegenga, J., Marani, E., Rutten, W.L.C.: Robustness of bursts in electrically stimulated neuronal networks. Journal of Neural EngineeringGoogle Scholar
  7. 7.
    Jimbo, Y., Robinson, H.P., Kawana, A.: Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans. Biomed. Eng. 45(11), 1297–1304 (1998)CrossRefGoogle Scholar
  8. 8.
    Landweber, L., Kari, L.: The evolution of cellular computing: Nature’s solution to a computational problem. Biosystems 52(1/3), 3–13 (1999)CrossRefGoogle Scholar
  9. 9.
    University of Heidelberg (2006)Google Scholar
  10. 10.
    Ruaro, M.E., Bonifazi, P., Torre, V.: Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)CrossRefGoogle Scholar
  11. 11.
    Wagenaar, D.A., Pine, J., Potter, S.M.: Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. Journal of negative results in biomedicine 52(16) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Lorente
    • 1
  • José Manuel Ferrández-Vicente
    • 1
    • 3
  • Fco. Javier Garrigós-Guerrero
    • 1
  • Félix de la Paz López
    • 2
  • José Manuel Cuadra-Troncoso
    • 2
  • José Ramón Alvarez-Sanchez
    • 2
  • Eduardo Fernández
    • 3
  1. 1.Departamento de Electrónica, Tecnología de Computadores y ProyectosUniversidad Politécnica de CartagenaSpain
  2. 2.Dpto. de Inteligencia ArtificialUNEDMadridSpain
  3. 3.Instituto de BioingenieríaUniversidad Miguel HernándezAlicanteSpain

Personalised recommendations