Advertisement

Automatic Orientation of Functional Brain Images for Multiplataform Software

  • I. Alvarez Illán
  • Juan Manuel Górriz
  • Javier Ramirez
  • Diego Salas-González
  • Francisco Jesús Martínez-Murcia
  • F. Segovia
  • C. G. Puntonet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

An automated method for orientation of functional brain image is proposed. Intrinsec information is captured from the image in three stages: first the volume to identify the anterior to posterior line, second the symmetry to detect the hemisphere dividing plane and third the contour to determine the up-down and front-back orientation. The approach is tested in more than a tousand images from different formats and modalities with high reconition rates.

Keywords

Cross Correlation Brain Image Normalize Cross Correlation Functional Brain Image Midsagittal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, J.D., Hutchins, G.C., McDonald, C.J.: Computer automated detection of head orientation for prevention of wrong-side treatment errors. In: AMIA Annual Symposium Proceedings, pp. 136–140 (2006) PMID: 17238318 PMCID: PMC1839503Google Scholar
  2. 2.
    Tsao, J., Stundzia, A., Ichise, M.: Fully automated establishment of stereotaxic image orientation in six degrees of freedom for technetium-99m-ECD brain SPECT. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 39(3), 503–508 (1998) PMID: 9529300Google Scholar
  3. 3.
    Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3-d brain images. IEEE Transactions on Medical Imaging 21(2), 122–138 (2002)CrossRefGoogle Scholar
  4. 4.
    Ardekani, B., Kershaw, J., Braun, M., Kanuo, I.: Automatic detection of the mid-sagittal plane in 3-d brain images. IEEE Transactions on Medical Imaging 16(6) (December 1997)Google Scholar
  5. 5.
    Hu, Q., Nowinski, W.L.: A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. NeuroImage 20(4), 2153–2165 (2003)CrossRefGoogle Scholar
  6. 6.
    Ardekani, B.A., Bachman, A.H.: Model-based automatic detection of the anterior and posterior commissures on MRI scans. NeuroImage 46(3), 677–682 (2009) PMID: 19264138Google Scholar
  7. 7.
    Liu, Y., Collins, R., Rothfus, W.: Robust midsagittal plane extraction from normal and pathological 3-d neuroradiology images. IEEE Transactions on Medical Imaging 20(3), 175–192 (2001)CrossRefGoogle Scholar
  8. 8.
    Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E.: Correlation methods for the centering, rotation, and alignment of functional brain images. Journal of Nuclear Medicine 31(7), 1220–1226 (1990)Google Scholar
  9. 9.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    von Hippel, P.T.: Mean, median, and skew: Correcting a textbook rule. Journal of Statistics Education 13(2) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • I. Alvarez Illán
    • 1
  • Juan Manuel Górriz
    • 1
  • Javier Ramirez
    • 1
  • Diego Salas-González
    • 1
  • Francisco Jesús Martínez-Murcia
    • 1
  • F. Segovia
    • 1
  • C. G. Puntonet
    • 2
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaSpain
  2. 2.Dept. of Computers Architecture and TechnologyUniversity of GranadaSpain

Personalised recommendations