Self Organized Biogeography Algorithm for Clustering

  • Leila Hamdad
  • Anissa Achab
  • Amira Boutouchent
  • Fodil Dahamni
  • Karima Benatchba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)


We propose in this work a new self organized biomimitic approach for unsupervised classification, named BFC, based on BBO (Biogeography based optimization). This method is tested on several real datasets(IRIS, Satimages and heart). These benchmarks are characterized by increasing overlap degree. Moreover, a comparison of BFC with other clustering methods having proven their efficiency is presented. We will highlight the impact of this overlap on the performance of the methods.


Clustering Self organization Biomimetic method Biogeography Biogeography based optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognition 33, 1455–1465 (2000)CrossRefGoogle Scholar
  2. 2.
    Ostrovsky, R., Rabani, Y.: Polynomial time approximation schemes for geometric k-clustering. In: IEEE Symposium on Foundations of Computer Science, pp. 349–358 (2000)Google Scholar
  3. 3.
    Chen, L., Xu, X., Chen, Y.: An adaptative ant colony clustering algorithm. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, August 26-29 (2004)Google Scholar
  4. 4.
    Chen, C.Y., Ye, F.: Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis. In: Proceedings of the IEEE ICNSC, Taipei, Taiwan, pp. 789–794 (2004)Google Scholar
  5. 5.
    Azzag, H., Picarougne, F., Guinot, C., Venturini, G.: Classification de données par automate cellulaire. Comptes rendus des 12-émes Rencontres de la Société Francophone de Classification, Mais-1er Juin, Université du Québec á, 30 (2005)Google Scholar
  6. 6.
    Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334(1-3), 3–33 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Simon, D.: Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation 12(6) (December 2008)Google Scholar
  8. 8.
    Blake, C., Merz, C.: CI Repository of machine learning databases. University of California Irvine, Dept. of Information and Computer Sciences (1998),
  9. 9.
    Chatterjee, A., Siarry, P., Nakib, A., Blanc, R.: An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy. Engineering Applications of Artificial Intelligence 25(8), 1698–1709 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, P., Wei, P., Yu, H.Y.: Biogeography-based optimisation search algorithm for block matching motion estimation. IET Image Processing 6(7), 1014–1023 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boussaid, I., Chatterjee, A., Siarry, P., Ahmed-Nacer, M.: Biogeography-based optimization for constrained optimization problems. Computers and Operations Research 39(12), 3293–3304 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wesche, T., Goertler, G., Hubert, W.: Modified habitat suitability index model for brown trout in southeastern Wyoming. North Amer. J. Fisheries Manage. 7, 232–237 (1987)CrossRefGoogle Scholar
  13. 13.
    Panchal, V.K., Singh, P., Kaur, N., Kundra, H.: Biogeography based Satellite Image Classification. International Journal of Computer Science and Information Security (IJCSIS) 6(2), 269–274 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leila Hamdad
    • 1
  • Anissa Achab
    • 2
  • Amira Boutouchent
    • 2
  • Fodil Dahamni
    • 2
  • Karima Benatchba
    • 2
  1. 1.LCSIEcole Nationale Supérieure d’InformatiqueAlgerAlgrie
  2. 2.LMCSEcole Nationale Supérieure d’InformatiqueAlgerAlgrie

Personalised recommendations