Contrast Enhancement Mechanisms in the Retinothalamic Circuitry

  • Rubén Ferreiroa
  • Eduardo Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)


The center-surround organization of the receptive fields of retinal ganglion cells highlights the presence of contrast in visual stimuli. As the receptive fields of thalamic relay cells follow the same organization, it is assumed that nothing or little processing is carried out at the thalamic stage before the information reaches higher processing areas. However, recent data in cat showing that the number of thalamic relay cells doubles those of retinal ganglion cells opens the door to question how contrast information is kept in an enlarged representation of the visual stimulus at the thalamic stage. This paper is aimed at providing a plausible explanation by means of simulations performed with a realistic dynamic model of the retinothalamic circuit.


Ganglion Cell Retinal Ganglion Cell Lateral Geniculate Nucleus Channel Output Spike Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, J.M., Yeh, C.I., Weng, C., Stoelzel, C.: Retinogeniculate connections: a balancing act between connection specificity and receptive field diversity. Progress in Brain Research 154 (2006)Google Scholar
  2. 2.
    Allen, E.A., Freeman, R.D.: Dynamic Spatial Processing Originates in Early Visual Pathways (2006)Google Scholar
  3. 3.
    Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions of Neural Networks 14(6) (November 2003)Google Scholar
  4. 4.
    Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  5. 5.
    Madarász, M., Gerle, J., Hajdu, F., Somogyi, G., Tombol, T.: Quantitative histological studies on the lateral geniculate nucleus in the cat. II. Cell numbers and densities in the several layers. J. Hirnforsch. 19(2), 159–164 (1978)Google Scholar
  6. 6.
    Ringach, D.L.: Haphazard Wiring of Simple Receptive Fields and Orientation Columns in Visual Cortex. Journal of Neurophysiology 92, 468–476 (2007)CrossRefGoogle Scholar
  7. 7.
    Yeh, C.I., Stoelzel, C.R., Weng, C., Alonso, J.M.: Functional Consequences of Neural Divergence Within the Retinogeniculate Pathway. J. Neurophysiol. 101 (2009)Google Scholar
  8. 8.
    McCormick, D.A., Huguenard, J.: A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology 68, 1384–1400 (1992)Google Scholar
  9. 9.
    Ferreiroa, R., Sanchez, E.: Functional properties of a realistic model of dLGN. Neurocomputing (2013)Google Scholar
  10. 10.
    Palmer, S.E.: Vision Science. MIT (1999)Google Scholar
  11. 11.
    Dayan, P., Abbott, L.F.: Theorical Neuroscience. MIT (2001)Google Scholar
  12. 12.
    Rieke, F., Warland, D.: Spikes exploring the neural code. MIT (1999)Google Scholar
  13. 13.
    Koch, C.: Biophysics of Computation. Oxford University Press (1999)Google Scholar
  14. 14.
    Manzón, M.M., Rodríguez, M.M., Otero, L.M.: DEA. How the thalamus chages What the cat’s eye tells the cat’s brain (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rubén Ferreiroa
    • 1
  • Eduardo Sánchez
    • 1
  1. 1.Grupo de Sistemas Intelixentes (GSI), Centro Singular de Investigación en Tecnologias de la Información (CITIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations