Modeling the Effect of Fixational Eye Movements in Natural Scenes

  • Andrés Olmedo-Payá
  • Antonio Martínez-Álvarez
  • Sergio Cuenca-Asensi
  • José Manual Ferrández-Vicente
  • Eduardo Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

Our eyes never remain still. Even when we stare at a point, small involuntary movements move our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with or without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasability of these models to be incorporated in future neuroprosthesis. For this purpose each retina model have been stimulated with the same natural scene sequence of images. Results are discussed from the point of view of a neuroprosthesis development.

Keywords

Fixational eye movements microsaccades retina model 

References

  1. 1.
    Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5, 229–240 (2004)CrossRefGoogle Scholar
  2. 2.
    Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)Google Scholar
  3. 3.
    Ratliff, F., Riggs, L.A.: A involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40, 687–701 (1950)CrossRefGoogle Scholar
  4. 4.
    Ditchburn, R.W.: The function of small saccades. Vision Res. 20, 271–272 (1980)CrossRefGoogle Scholar
  5. 5.
    Gerrits, H.J., Vendrik, A.J.: Artificial movements of a stabilized image. Vision Research 10, 1443–1456 (1970)CrossRefGoogle Scholar
  6. 6.
    Krauskopf, J.: Effect of retinal image motion on contrast thresholds for maintained vision. Journal of the Optical Society of America 47, 740–744 (1957)CrossRefGoogle Scholar
  7. 7.
    Sharpe, C.R.: The visibility and fading of thin lines visualized by their controlled movement across the retina. Journal of Physiology 222, 113–134 (1972)Google Scholar
  8. 8.
    Steinman, R.M., Cunitz, R.J., Timberlake, G.T., Herman, M.: Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967)CrossRefGoogle Scholar
  9. 9.
    Zuber, B.L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology 16, 65–79 (1966)CrossRefGoogle Scholar
  10. 10.
    Riggs, L.A., Ratliff, F.: The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America 42, 872–873 (1952)Google Scholar
  11. 11.
    Ditchburn, R.W., Fender, D.H., Mayne, S.: Vision with controlled movements of the retinal image. J. Physiol. 145(1), 98–107 (1959)Google Scholar
  12. 12.
    Nachmias, J.: Determiners of the Drift of the Eye during Monocular Fixation. J. Opt. Soc. Am. 51, 761–766 (1961)CrossRefGoogle Scholar
  13. 13.
    Greschner, M., Bongard, M., Rujan, P., Ammermüeller, J.: Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nature Neuroscience 5, 341–347 (2002)CrossRefGoogle Scholar
  14. 14.
    Donner, K., Hemila, S.: Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research 47(9), 1166–1177 (2007) ISSN 0042-6989, 10.1016/j.visres.2006.11.024Google Scholar
  15. 15.
    Martínez, A., Reyneri, L.M., Pelayo, F.J., Romero, S.F., Morillas, C.A., Pino, B.: Automatic Generation of Bio-inspired Retina-Like Processing Hardware. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 527–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Wohrer, A., Kornprobst, P.: Virtual Retina: A biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26, 219–249 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bongard, M., Ferrandez, J.M., Fernandez, E.: The neural concert of vision. Neurocomputing 72, 814–819 (2009)CrossRefGoogle Scholar
  18. 18.
    Martìnez-Álvarez, A., Olmedo-Payá, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: RetinaStudio: A bioinspired framework to encode visual information. Neurocomputing (2012) ISSN 0925–2312, 10.1016/j.neucom.2012.07.035Google Scholar
  19. 19.
    Ferrández, J.M., Bongard, M., García de Quirós, F., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: Decoding the Population Responses of Retinal Ganglions Cells Using Information Theory. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 55–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Normann, R., Maynard, E.M., Rousche, P., Warren, D.: A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999)CrossRefGoogle Scholar
  21. 21.
    Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Fernández, E.: A Computational Tool to Test Neuromorphic Encoding Schemes for Visual Neuroprostheses. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 510–517. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Gerstner, W., Kistler, W.: Spiking Neuron Modelssingle Neurons, Populations, Plasticity, pp. 93–97. Cambridge University Press (2002)Google Scholar
  23. 23.
    Gauthier, J.L., Field, G.D., Sher, A., Greschner, M., Shlens, J., Litke, A.M., Chichilnisky, E.J.: Receptive Fields in Primate Retina are Coordinated to Sample Visual Space More Uniformly. PLoS Biol. 7(4), 1000063 (2009), doi:10.1371/journal.pbio.1000063CrossRefGoogle Scholar
  24. 24.
    Carpenter, R.H.S.: Movements of the Eyes. Journal of Modern Optics 36(9), 1273–1276 (1989)MathSciNetGoogle Scholar
  25. 25.
    Stacy, E.W.: A Generalization of the Gamma Distribution. Ann. Math. Statist. 33(3), 1187–1192 (1962)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pritchard, R.M.: Stabilized images on the retina. Sci. Am. 204, 72–78 (1961)CrossRefGoogle Scholar
  27. 27.
    Straw, A.D.: Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation. Front Neuroinformatics 2(4) (2008), doi:10.3389/neuro.11.004.2008Google Scholar
  28. 28.
    NEV 2.0 (Neural Event Format) format specification http://cyberkineticsinc.com/NEVspc20.pdf
  29. 29.
  30. 30.
    Mancuso, M., Poiuzzi, R., Rizzotto, G.G.: A fuzzy filter for dynamic range reduction and contrast enhancement. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, vol. 1, pp. 264a, 265–267 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrés Olmedo-Payá
    • 1
  • Antonio Martínez-Álvarez
    • 2
  • Sergio Cuenca-Asensi
    • 2
  • José Manual Ferrández-Vicente
    • 3
  • Eduardo Fernández
    • 1
  1. 1.Institute of Bioengineering and CIBER BBNUniversity Miguel HernandezAlicanteSpain
  2. 2.Computer Technology DepartmentUniversity of AlicanteAlicanteSpain
  3. 3.Department of Electronics and Computer TechnologyUniversidad Politécnica de CartagenaSpain

Personalised recommendations