Neuron Threshold Variability in an Olfactory Model Improves Odorant Discrimination

  • Aaron Montero
  • Ramon Huerta
  • Francisco B. Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

We used a model based on the olfactory system of insects to analyze the impact of neuron threshold variability in the mushroom body (MB) for odorant discrimination purposes. This model is a single-hidden-layer neural network (SLN) where the input layer represents the antennal lobe (AL), which contains a binary code for each odorant; the hidden layer that represents the Kenyon cells (KC) and the output layer named the output neurons. The KC and output layers are responsible for learning odor discrimination. The binary code obtained for each odorant in the output layer has been used to measure the discrimination error and to know what kind of thresholds (heterogeneous or homogeneous) provide better results when they are used in KC and output neurons. We show that discrimination error is lower for heterogeneous thresholds than for homogeneous thresholds.

Keywords

neural variability pattern recognition odor learning and discrimination decision making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angioy, A.M., Desogus, A., Barbarossa, I.T., Anderson, P., Hansson, B.S.: Extreme Sensitivity in an Olfactory System. Chemical Senses 28(4), 279–284 (2003)CrossRefGoogle Scholar
  2. 2.
    Daly, K.C., Wright, G.A., Smith, B.H.: Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. (February 25, 2004)Google Scholar
  3. 3.
    Doleman, B.J., Lewis, N.S.: Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors and Actuators B 72, 41–50 (2001)CrossRefGoogle Scholar
  4. 4.
    Dubnau, J., Grady, L., Kitamoto, T., Tully, T.: Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476–480 (2001)CrossRefGoogle Scholar
  5. 5.
    Galan, R.F., Sachse, S., Galizia, C.G., Herz, A.V.: Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid odor classification. Neural Computation 16(5), 999–1012 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    García, M., Huerta, R.: Design Parameters of the Fan-Out Phase of Sensory Systems. Journal of Computational Neuroscience 15, 5–17 (2003)CrossRefGoogle Scholar
  7. 7.
    Huerta, R., Nowotny, T., García, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning Classification in the Olfactory System of Insects. Neural Computation 16, 1601–1640 (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Huerta, R., Nowotny, T.: Fast and Robust Learning by Reinforcement Signals: Explorations in the Insect Brain. Neural Computation 21, 2123–2151 (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Jortner, R.A., Farivar, S.S., Laurent, G.: A simple connectivity scheme for sparse coding in an olfactory system. The Journal of Neuroscience (February 14, 2007)Google Scholar
  10. 10.
    Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A., Abarbanel, H.D.I.: Odor encoding as an active, dynamical process: Experiments, Computation, and Theory. Neuroscience 24, 263–297 (2001)Google Scholar
  11. 11.
    Laurent, G.: Olfactory network dynamics and the coding of mutidimensional signals. Nat. Rev. Neurosci. 3(11), 884–895 (2002)CrossRefGoogle Scholar
  12. 12.
    Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109(2), 243–255 (2002)CrossRefGoogle Scholar
  13. 13.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in neurons activity. Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pérez-Orive, J.: Oscillations and Sparsening of Odor Representations in the Mushroom Body. Science 297, 359–365 (2002)CrossRefGoogle Scholar
  15. 15.
    Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14(6), 449–457 (2004)CrossRefGoogle Scholar
  16. 16.
    Turner, G.C., Bazhenov, M., Laurent, G.: Olfactory representations by drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aaron Montero
    • 1
  • Ramon Huerta
    • 1
    • 2
  • Francisco B. Rodríguez
    • 1
  1. 1.Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.BioCircuits InstituteUniversity of CaliforniaSan DiegoUSA

Personalised recommendations