Training Study Approaches for a SVM-Based BCI: Adaptation to the Model vs Adaptation to the User

  • Enrique Hortal
  • Eduardo Iáñez
  • Andrés Úbeda
  • José María Azorín
  • Eduardo Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

Support Vector Machine (SVM) is extensively used in BCI classification. In this paper this classifier is used to differentiate between two mental tasks related to motor imaginary in order to check the possibility of improvement with two alternative adaptation (user’s adaptation and model adaptation). Two kind of training have been done by 4 subjects. In the first test (user’s adaptation to the model), each subject use a personalized model and 7 sessions are registered to compare the evolution of the results due to the user’s training. This initial model is done with a preliminary session which include register of 6 different motor imaginary tasks to select the best combination of them. The second test (model’s adaptation to the user) tries to evaluate the benefits of the updating of the model with new registers. The results show that, at least for this kind of imaginary tasks, these methods of adaptation with a SVM-based system have not a meaningful increase of the success rate.

Keywords

BCI adaptation SVM motor imaginary task training 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolelis, M.A.L.: Actions from Thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  2. 2.
    Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., del Millan, J.R.: A Brain-Actuated Wheelchair: Asyncronous and Non-invasive Brain-Computer Interface for Continuous Control of Robots. Clinical Neurophysiological 119, 2159–2169Google Scholar
  3. 3.
    Iturrare, I., Antelis, J.M., Kubler, A., Minguez, J.: A Non-invasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics 25(3), 614–627 (2009)CrossRefGoogle Scholar
  4. 4.
    Obermaier, B., Muller, G.R., Pfurtscheller, G.: Virtual Keyboard Controlled by Spontaneous EEG Activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 422–426 (2003)CrossRefGoogle Scholar
  5. 5.
    Gao, X., Dignfeng, X., Cheng, M., Gao, S.: A BCI-based Environment Controller for the Motion-Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 137–140 (2003)CrossRefGoogle Scholar
  6. 6.
    Wang, C., Phua, K., Ang, K.K., Guan, C., Zhang, H., Lin, R., Chau, K.S.G., Ang, B.T., Kuah, C.W.K.: A feasibility study of non-invasive motor imagery BCI-based robotic rehabilitation for Stroke patients. In: 4th International IEEE/EMBS Conference on Neural Engineering, Ner 2009 (2009)Google Scholar
  7. 7.
    Tam, W.K., Tong, K., Meng, F., Gao, S.: A Minimal Set of Electrodes for Motor Imagery BCI to Control an Assistive Device in Chronic Stroke Subjects: A Multi-Session Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(6), 617–627 (2011)CrossRefGoogle Scholar
  8. 8.
    Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M.: Learning to Control a Brain-Machine Interface for Reaching and Grasping by Primates. PLoS Biology 1(2), E42 (2003)Google Scholar
  9. 9.
    Serruya, M.D., Harsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, K.: Instant Neural Control of a Movement Signal. Nature 416, 141–142 (2002)CrossRefGoogle Scholar
  10. 10.
    Millán, J.R., Ferrez, P.W., Buttfield, A.: Non-Invasive Brain-Machine Interfaces - Final Report. IDIAP Research Institute - ESA (2005)Google Scholar
  11. 11.
    Iáñez, E., Azorín, J.M., Úbeda, A., Ferrández, J.M., Fernández, E.: Mental Task-Based Brain-Robot Interface. Robotics and Autonomous System 58(12), 1238–1245 (2010)CrossRefGoogle Scholar
  12. 12.
    Chavarriaga, R., del Millán, J.R.: Learning from EEG Error-related Potentials in Non-Invasive Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 381–388 (2010)Google Scholar
  13. 13.
    American Electroencephalographic Society. American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200–202 (1991)Google Scholar
  14. 14.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification (2003), http://www.csie.ntu.edu.tw/cjlin/libsvm/ (updated April 2012) (accessed October 11, 2012]
  15. 15.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain-computer Interfaces. Journal of Neural Engineering 4, R1–R13 (2007)Google Scholar
  16. 16.
    Flórez, F., Azorín, J.M., Iáñez, E., Úbeda, A., Fernández, E.: Development of a Low-cost SVM-based Spontaneous Brain-computer Interface. In: IJCCI (NCTA), pp. 415–421 (2011)Google Scholar
  17. 17.
    Guger, C., Schlögl, A., Neuper, C., Walterspacher, D., Strein, T., Pfurtscheller, G.: Rapid Prototyping of an EEG-Based Brain-Computer Interface (BCI). IEEE Transactions on Rehabilitation Engineering 9(1), 49–58 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enrique Hortal
    • 1
  • Eduardo Iáñez
    • 1
  • Andrés Úbeda
    • 1
  • José María Azorín
    • 1
  • Eduardo Fernández
    • 1
  1. 1.Biomedical Neuroengineering GroupMiguel Hernández University of ElcheElcheSpain

Personalised recommendations