The Intelligent Room for Elderly Care

  • Oscar Martinez Mozos
  • Tokuo Tsuji
  • Hyunuk Chae
  • Shunya Kuwahata
  • YoonSeok Pyo
  • Tsutomu Hasegawa
  • Ken’ichi Morooka
  • Ryo Kurazume
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

Daily life assistance for elderly is one of the most promising and interesting scenarios for advanced technologies in the near future. Improving the quality of life of elderly is also some of the first priorities in modern countries and societies where the percentage of elder people is rapidly increasing due mainly to great improvements in medicine during the last decades. In this paper, we present an overview of our informationally structured room that supports daily life activities of elderly with the aim of improving their quality of life. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is sent to a centralized management system which processes the data and makes it available to a service robot which assists the people in the room. One important restriction in our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activities of people and to reduce as much as possible the invasion of their privacy. In addition we discuss some experiments using our real environment and robot.

Keywords

Quality of Life Technologies Assistive Robotics Intelligent Room Ambient Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dario, P., Guglielmelli, E., Laschi, C., Teti, G.: Movaid: A personal robot in everyday life of disabled and elderly people. Technology and Disability 10, 77–93 (1999)Google Scholar
  2. 2.
    Hasegawa, T., Muarkami, K.: Robot town project: Supporting robots in an environment with its structured information. In: Proc. of the 5th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp. 119–123 (2006)Google Scholar
  3. 3.
    Kawamura, K., Iskarous, M.: Trends in service robots for the disabled and the elderly. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 1647–1654 (September 1994)Google Scholar
  4. 4.
    Kayama, K., Yairi, I.E., Igi, S.: Semi-autonomous outdoor mobility support system for elderly and disabled people. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2606–2611 (2003)Google Scholar
  5. 5.
    Kim, B.K., Tomokuni, N., Ohara, K., Tanikawa, T., Ohba, K., Hirai, S.: Ubiquitous localization and mapping for robots with ambient intelligence. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4809–4814 (2006)Google Scholar
  6. 6.
    Kim, M., Kim, S., Park, S., Choi, M.-T., Kim, M., Gomaa, H.: Service robot for the elderly. IEEE Robotics Automation Magazine 16(1), 34–45 (2009)CrossRefGoogle Scholar
  7. 7.
    Lee, J.H., Hashimoto, H.: Intelligent space - concept and contents. Advanced Robotics 16(3), 265–280 (2002)CrossRefGoogle Scholar
  8. 8.
    Mori, T., Takada, A., Noguchi, H., Harada, T., Sato, T.: Behavior prediction based on daily-life record database in distributed sensing space. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1833–1839 (2005)Google Scholar
  9. 9.
    Murakami, K., Hasegawa, T., Kurazume, R., Kimuro, Y.: A structured environment with sensor networks for intelligent robots. In: Proc. of IEEE Int. Conf. on Sensors, pp. 705–708 (2008)Google Scholar
  10. 10.
    Murakami, K., Hasegawa, T., Shigematsu, K., Sueyasu, F., Nohara, Y., Ahn, B.W., Kurazume, R.: Position tracking system of everyday objects in an everyday environment. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3712–3718 (October 2010)Google Scholar
  11. 11.
    Murakami, K., Matsuo, K., Hasegawa, T., Kurazume, R.: Position tracking and recognition of everyday objects by using sensors embedded in an environment and mounted on mobile robots. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2210–2216 (May 2012)Google Scholar
  12. 12.
    Murakami, K., Hasegawa, T., Kurazume, R., Kimuro, Y.: Supporting robotic activities in informationally structured environment with distributed sensors and rfid tags. Journal of Robotics and Mechatronics 21(4), 453–459 (2009)Google Scholar
  13. 13.
    Nakauchi, Y., Noguchi, K., Somwong, P., Matsubara, T., Namatame, A.: Vivid room: Human intention detection and activity support environment for ubiquitous autonomy. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 773–778 (2003)Google Scholar
  14. 14.
    Nishida, Y., Aizawa, H., Hori, T., Hoffman, N.H., Kanade, T., Kakikura, M.: 3d ultrasonic tagging system for observing human activity. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 785–791 (October 2003)Google Scholar
  15. 15.
    Nohara, Y., Hasegawa, T., Murakami, K.: Floor sensing system using laser range finder and mirror for localizing daily life commodities. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1030–1035 (October 2010)Google Scholar
  16. 16.
    Nugent, C.D., Finlay, D.D., Fiorini, P., Tsumaki, Y., Prassler, E.: Home automation as a means of independent living. IEEE Trans. Automation Science and Engineering 5(1), 1–9 (2008)CrossRefGoogle Scholar
  17. 17.
    Roy, N., Baltus, G., Fox, D., Gemperle, F., Goetz, J., Hirsch, T., Magaritis, D., Montemerlo, M., Pineau, J., Schulte, J., Thrun, S.: Towards personal service robots for the elderly. Carnegie Mellon University (2000)Google Scholar
  18. 18.
    Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Collet, A., Diankov, R., Gallagher, G., Hollinger, G., Kuffner, J., VandeWeghe, M.: Herb: A home exploring robotic butler. Autonomous Robots 28, 5–20 (2010)CrossRefGoogle Scholar
  19. 19.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Tombari, F., Di Stefano, L.: Object recognition in 3d scenes with occlusions and clutter by hough voting. In: 4th Pacific-Rim Symposium on Image and Video Technology (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oscar Martinez Mozos
    • 1
    • 2
  • Tokuo Tsuji
    • 2
  • Hyunuk Chae
    • 2
  • Shunya Kuwahata
    • 2
  • YoonSeok Pyo
    • 2
  • Tsutomu Hasegawa
    • 2
  • Ken’ichi Morooka
    • 2
  • Ryo Kurazume
    • 2
  1. 1.School of Computer ScienceUniversity of LincolnLincolnUnited Kingdom
  2. 2.Faculty of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations