Advertisement

View Synthesis for Real Scene Visualisation on Autostereoscopic Displays

  • Eva Salvador-Balaguer
  • Jose Martinez Sotoca
  • Filiberto Pla Bañón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)

Abstract

This paper presents a view synthesis algorithm to generate intermediate views that allows moving a virtual camera along a 1-D path. Instead of relying on accurate depth maps, the proposed method uses a disparity map that provides a dense pixel correspondence. The algorithm is able to generate images of complex real scenes that are ready to be displayed on an autostereoscopic device. Experiments illustrate the quality of the virtual views showing a comparison between the synthetic views obtained and the real ones.

Keywords

novel view synthesis view morphing 3DTV autostereoscopic displays multi-view rectification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magnor, M.: 3D-TV - The Future of Visual Entertainment. In: Proceedings of Multimedia Databases and Image Communications, pp. 105–112 (2004)Google Scholar
  2. 2.
    Levoy, M.: The digital Michelangelo project. In: Proceeding of the 3-D Digital Imaging and Modeling, vol. 19, pp. 2–11 (1999)Google Scholar
  3. 3.
    Fusiello, A., Caldrer, S., Ceglie, S., Mattern, N., Murino, V.: View synthesis from uncalibrated images using parallax. In: 12th International Conference on Image Analysis and Processing, pp. 146–151 (2003)Google Scholar
  4. 4.
    Irani, M., Hassner, T., Anandan, P.: What Does the Scene Look Like from a Scene Point? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 883–897. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Laveau, S., Faugeras, O.: 3-D Scene Representation as a Collection of Images and Fundamental Matrices. Technical Report 22 (1994)Google Scholar
  6. 6.
    Chen, S.E., Willians, L.: View interpolation for image synthesis. Computer Graphics, 279–288 (1993)Google Scholar
  7. 7.
    Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In: Proceedings of the SPIE, Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 93–104 (2004)Google Scholar
  8. 8.
    Kauff, P., et al.: Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. Signal Processing: Image Communication 22, 217–234 (2007)CrossRefGoogle Scholar
  9. 9.
    Seitz, S.M., Dyer, C.R.: View Morphing. In: Proc. SIGGRAPH, pp. 21–30 (1996)Google Scholar
  10. 10.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)CrossRefGoogle Scholar
  11. 11.
    Kang, Y.-S., Ho, Y.-S.: An efficient image rectification method for parallel multi-camera arrangement. IEEE Transactions on Consumer Electronics 57(3), 1041–1048 (2011)CrossRefGoogle Scholar
  12. 12.
    Zitnick, C.L., Kanade, T.: A Cooperative Algorithm for Stereo Matching and Occlusion Detection. Proc. IEEE Trans. Pattern Analysis and Machine Intelligence 22(7), 675–684 (2000)CrossRefGoogle Scholar
  13. 13.
    Colombari, A., Fusiello, A., Murino, V.: Continuous parallax adjustment for 3D-TV. In: 2nd IEE European Conference on Visual Media Production, pp. 194–200 (2005)Google Scholar
  14. 14.
    Shashua, A., Navab, N.: Relative Affine Structure: Canonical Model for 3D from 2D Geometry and Applications. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 873–883 (1996)Google Scholar
  15. 15.
    Lewis, J.P.: Fast normalized cross-correlation. Vision Interface, 120–123 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Salvador-Balaguer
    • 1
  • Jose Martinez Sotoca
    • 1
  • Filiberto Pla Bañón
    • 1
  1. 1.Institute of New Imaging TechnologiesUniversity Jaume ICastellónSpain

Personalised recommendations