Detection and Matching of Lines for Close-Range Photogrammetry

  • Juan López
  • María Fuciños
  • Xosé R. Fdez-Vidal
  • Xosé M. Pardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)


Photogrammetry is a flexible, accurate and non-contact measurement tool, which has been proven to be very profitable for many industrial applications. In order to achieve robustness and full automation of the measurement process, all commercial photogrammetric systems use physical retro-reflective markers. However, attaching markers to big structures is often impractical. Recently, big interest emerged concerning the use of natural markers, such as lines and conics, in industrial photogrammetric processes. In this paper we present a novel approach for line detection and matching aimed at achieving good performance with industrial images acquired under varying illumination conditions.


Illumination Condition Illumination Change Synthetic Image Line Extraction Phase Congruency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Estler, W., Edmundson, K., Peggs, G., Parker, D.: Large-scale metrology an update. CIRP Annals - Manufacturing Technology 51(2), 587–609 (2002)CrossRefGoogle Scholar
  2. 2.
    Dosil, R., Pardo, X.M., Fdez-Vidal, X.R., García-Díaz, A., Leborán, V.: A new radial symmetry measure applied to photogrammetry. Pattern Analysis and Applications, 1–10 (2012)Google Scholar
  3. 3.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Ferrari, V., Gool, L.J.V.: Wide-baseline stereo matching with line segments. In: CVPR (1), pp. 329–336. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Wang, Z., Wu, F., Hu, Z.: MSLD: A robust descriptor for line matching. Pattern Recogn. 42(5), 941–953 (2009)CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Koch, R.: Line matching using appearance similarities and geometric constraints. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM and OAGM 2012. LNCS, vol. 7476, pp. 236–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49(12), 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Felsberg, M.: Low Level Image Processing with the Structure Multivector. Bericht. Inst. f. Informatik u. Prakt. Mathematik der Christian-Albrechts-Univ. (2002)Google Scholar
  10. 10.
    Schmid, C., Zisserman, A.: Automatic line matching across views. In: Proc. CVPR, pp. 666–671 (1997)Google Scholar
  11. 11.
    Wang, L., Neumann, U., You, S.: Wide-baseline image matching using line signatures. In: ICCV, pp. 1311–1318. IEEE (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan López
    • 1
  • María Fuciños
    • 1
  • Xosé R. Fdez-Vidal
    • 1
  • Xosé M. Pardo
    • 1
  1. 1.Centro de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaSpain

Personalised recommendations