The Role of Keypoint Sampling on the Classification of Melanomas in Dermoscopy Images Using Bag-of-Features

  • Catarina Barata
  • Jorge S. Marques
  • Jorge Rozeira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)


Integrating medical knowledge on a Computer Aided-Diagnosis systems for the detection of melanomas is an essential factor for the acceptance of the system by the medical community. Bag-of-Features, a popular classification method based on a local description of an image, can be used as a means to integrate medical knowledge while developing an automatic melanoma classification system. An important step of this algorithm is the correct identification of discriminative regions, due to the great impact that it has on the algorithm’s performance. This paper aims at comparing different strategies for the extraction of interest regions. The achieved results show that texture-based detectors perform better than a dense sampling strategy, achieving Sensitivity= 98% and Specificity= 86%.


Melanoma Dermoscopy Computer-Aided Diagnosis Systems Bag-of-Features Keypoints Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argenziano, G., et al.: Interactive atlas of dermoscopy (2000)Google Scholar
  2. 2.
    Stolz, W., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Euro. J. Dermatology 4, 521–527 (1994)Google Scholar
  3. 3.
    Argenziano, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arc. Dermatology 134, 1563–1570 (1998)CrossRefGoogle Scholar
  4. 4.
    Barata, C., et al.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE TBME 59(10), 2744–2754 (2012)Google Scholar
  5. 5.
    Celebi, M., et al.: Automatic detection of blue-white veil and related structures in dermoscopy images. CMIG 32(8), 670–677 (2008)MathSciNetGoogle Scholar
  6. 6.
    Serrano, C., et al.: Pattern analysis of dermoscopic images based on markov random fields. PR 42, 1052–1057 (2009)CrossRefGoogle Scholar
  7. 7.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. 9th IEEE ICCV, pp. 1470–1477 (2003)Google Scholar
  8. 8.
    Situ, N., et al.: Evaluating sampling strategies of dermoscopic interest points. In: Proc. 8th ISBI, pp. 109–112 (2011)Google Scholar
  9. 9.
    Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    van de Sande, K., et al.: Evaluating color descriptors for object and scene recognition. IEEE TPAMI 32, 1582–1593 (2010)CrossRefGoogle Scholar
  11. 11.
    Yu, H.: Li, et al.: Color texture moment for content-based image retrieval. In: Proc. IEEE ICIP, vol. 3, pp. 929–932 (2002)Google Scholar
  12. 12.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Jour. Comp. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. Jour. Comp. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., et al.: A comparison of affine regions. Int. Jour. Comp. Vis. 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  15. 15.
    Kittler, J., et al.: On combining classifiers. IEEE TPAMI 20, 226–239 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Catarina Barata
    • 1
  • Jorge S. Marques
    • 1
  • Jorge Rozeira
    • 2
  1. 1.Institute for Systems and RoboticsInstituto Superio TécnicoPortugal
  2. 2.Hospital Pedro HispanoMatosinhosPortugal

Personalised recommendations