Detection of Elliptical Shapes via Cross-Entropy Clustering

  • Jacek Tabor
  • Krzysztof Misztal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)

Abstract

The problem of finding elliptical shapes in an image will be considered. We discuss the new solution which uses cross-entropy clustering, providing the theoretical background of this approach. The proposed algorithm allows search for ellipses with predefined sizes and position in the space. Moreover, it works well in higher dimensions.

Keywords

cross-entropy MLE EM image processing pattern recognition clustering classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)CrossRefGoogle Scholar
  2. 2.
    Cover, T.M., Thomas, J.A., Wiley, J., et al.: Elements of information theory, vol. 6. Wiley Online Library (1991)Google Scholar
  3. 3.
    Davies, E.R.: Finding ellipses using the generalised Hough transform. Pattern Recognition Letters 9(2), 87–96 (1989)CrossRefGoogle Scholar
  4. 4.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  5. 5.
    Fraley, C.: Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing 20(1), 270–281 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
  7. 7.
    Grünwald, P.D., Myung, I.J., Pitt, M.A.: Advances in minimum description length: Theory and applications. The MIT Press (2005)Google Scholar
  8. 8.
    Illingworth, J., Kittler, J.: A survey of the Hough transform Computer vision, graphics, and image processing 44(1), 87–116 (1988)CrossRefGoogle Scholar
  9. 9.
    Lehmann, E.L., Casella, G.: Theory of point estimation, vol. 31. Springer (1998)Google Scholar
  10. 10.
    McLachlan, G.J., Krishnan, T.: The EM algorithm and extensions, p. 274. Wiley, New York (1997)MATHGoogle Scholar
  11. 11.
    Mcnicholas, P.D., Murphy, T.B.: Parsimonious gaussian mixture models. Statistics and Computing 18(3), 285–296 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mirsky, L.: A trace inequality of John von Neumann. Monatsh. Math. 79(4), 303–306 (1975)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Samé, A., Ambroise, C., Govaert, G.: An online classification em algorithm based on the mixture model. Statistics and Computing 17(3), 209–218 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saeed, K., AlBakoor, M.: Region Growing Based Segmentation Algorithm for Typewritten, and Handwritten Text Recognition. Applied Soft Computing 9(2), 608–617 (2009)CrossRefGoogle Scholar
  15. 15.
    Tabor, J., Spurek, P.: Cross-entropy clustering (2012), http://arxiv.org/pdf/1210.5594.pdf
  16. 16.
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transformation. IEEE Trans. Comput. C-27, 777–781 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jacek Tabor
    • 1
  • Krzysztof Misztal
    • 1
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations