Which Fast Nearest Neighbour Search Algorithm to Use?

  • Aureo Serrano
  • Luisa Micó
  • Jose Oncina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)

Abstract

Choosing which fast Nearest Neighbour search algorithm to use depends on the task we face. Usually kd-tree search algorithm is selected when the similarity function is the Euclidean or the Manhattan distances. Generic fast search algorithms (algorithms that works with any distance function) are only used when there is not specific fast search algorithms for the involved distance function.

In this work we show that in real data problems generic search algorithms (i.e. MDF-tree) can be faster that specific ones (i.e. kd-tree).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)MATHCrossRefGoogle Scholar
  3. 3.
    Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 5(4), 333–340 (1979)MATHCrossRefGoogle Scholar
  4. 4.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)CrossRefGoogle Scholar
  5. 5.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berchtold, S., Keim, D.A., Kriegel, H.P.: Readings in multimedia computing and networking, pp. 451–462. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  7. 7.
    Micó, L., Oncina, J., Carrasco, R.: A fast branch and bound nearest neighbor classifier in metric spaces. Pattern Recognition Letters 17, 731–773 (1996)CrossRefGoogle Scholar
  8. 8.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    Yianilos, P.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)Google Scholar
  10. 10.
    Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 574–584 (1995)Google Scholar
  11. 11.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann Publishers (1997)Google Scholar
  12. 12.
    Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching (2010)Google Scholar
  13. 13.
    Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous bisector* trees – a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  14. 14.
    Serrano, A., Micó, L., Oncina, J.: Impact of the initialization in tree-based fast similarity search techniques. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 163–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)MATHCrossRefGoogle Scholar
  16. 16.
    Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007), http://www.sisap.org/Metric_Space_Library.html
  17. 17.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar
  18. 18.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aureo Serrano
    • 1
  • Luisa Micó
    • 1
  • Jose Oncina
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain

Personalised recommendations