Advertisement

Detecting Arbitrarily Oriented Text Labels in Early Maps

  • Winfried Höhn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)

Abstract

In this work, we propose a novel method for robust, scale and rotation independent text/graphics separation for early maps. We apply a connected component analysis with density, minimum and maximum diameter as main features. In addition, we use a combined threshold region for the density and the ratio of maximum and minimum diameter, extended by an analysis of neighboring components to recognize text with large variations in style, size and orientations. Our method reaches an F1-score of 0.73 which is 0.19 higher than the 0.54 achieved by a state-of-the-art approach from the literature on the same test data set.

Keywords

multi-oriented text detection early maps graphical document analysis connected component analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S., Eichenberger-Liwicki, M., Dengel, A.: Extraction of text touching graphics using SURF. In: 10th IAPR International Workshop on Document Analysis Systems (DAS), pp. 349–353. IEEE (2012)Google Scholar
  2. 2.
    Ahmed, S., Weber, M., Eichenberger-Liwicki, M., Dengel, A.: Text/graphics segmentation in architectural floor plans. In: International Conference on Document Analysis and Recognition (2011)Google Scholar
  3. 3.
    Cao, R., Tan, C.-L.: Text/Graphics separation in maps. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 167–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Yuille, A.: Detecting and reading text in natural scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  5. 5.
    Chiang, Y.Y., Knoblock, C.A.: An approach for recognizing text labels in raster maps. In: Proceedings of the 20th International Conference on Pattern Recognition, pp. 3199–3202 (2010)Google Scholar
  6. 6.
    Chiang, Y.Y., Knoblock, C.A.: Recognition of multi-oriented, multi-sized, and curved text. In: Proceedings of the Tenth International Conference on Document Analysis and Recognition (2011)Google Scholar
  7. 7.
    Clavelli, A., Karatzas, D., Lladós, J.: A framework for the assessment of text extraction algorithms on complex colour images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS 2010, pp. 19–26 (2010)Google Scholar
  8. 8.
    Fletcher, L., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 910–918 (1988)CrossRefGoogle Scholar
  9. 9.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Text detection in indoor/outdoor scene images. In: First International Workshop on Camera-based Document Analysis and Recognition (2005)Google Scholar
  10. 10.
    Gllavata, J., Ewerth, R., Freisleben, B.: Text detection in images based on unsupervised classification of high-frequency wavelet coefficients. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 425–428. IEEE (2004)Google Scholar
  11. 11.
    Kasturi, R., Bow, S.T., Member, S., Member, S., El-Masri, W., Shah, J., Gattiker, J.R., Umesh, Mokate, B.: A system for interpretation of line drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 978–992 (1990)CrossRefGoogle Scholar
  12. 12.
    Kim, K., Jung, K., Kim, J.: Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1631–1639 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lucas, S.M.: ICDAR 2005 text locating competition results. In: ICDAR, pp. 80–85 (2005)Google Scholar
  14. 14.
    Roy, P.P., Vazquez, E., Lladós, J., Baldrich, R., Pal, U.: A system to segment text and symbols from color maps. In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 245–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Tombre, K., Tabbone, S., Pélissier, L., Dosch, P.: Text/Graphics separation revisited. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 200–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Computer Graphics and Image Processing 20(4), 375–390 (1982)CrossRefGoogle Scholar
  17. 17.
    Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1083–1090 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Winfried Höhn
    • 1
  1. 1.Department of Computer ScienceUniversity of WürzburgGermany

Personalised recommendations