Advertisement

Feasibility Study of Lesion Detection Using Deformable Part Models in Breast Ultrasound Images

  • Gerard Pons
  • Robert Martí
  • Sergi Ganau
  • Melcior Sentís
  • Joan Martí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)

Abstract

Detection of lesions in ultrasound imaging typically requires human analysis due to their complexity. Hence, computerized lesion detection methods could be used to help radiologists in this process due to the fact that an early detection reduces the death rate caused by breast cancer. In this paper we propose a first experiment of a feasibility study for adapting a generic object detection technique, Deformable Part Models (DPM), to detect lesions in breast US images without any kind of human supervision. This technique has been evaluated in different topics obtaining prominent results. Hence, we propose a first assessment of this methodology applied to lesion detection in US images. We used a data-set composed by 50 images, all from different patients (18 malignant lesions, 32 benign lesions and 50 healthy tissue regions). In terms of quantitative results for lesion detection, our proposal obtains a sensitivity of 82% with 0.51 false-positive detections per image and an A z value of 0.96, which proves the feasibility of the proposal.

Keywords

Breast cancer lesion detection ultrasound deformable part models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarenga, A., Infantosi, A., Pereira, W., Azevedo, C.: Assessing the combined performance of texture and morphological parameters in distinguishing breast tumors in ultrasound images. Medical Physics 39(12), 7350–7358 (2012)CrossRefGoogle Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893 (2005)Google Scholar
  3. 3.
    Drukker, K., Giger, M.L., Horsch, K., Kupinski, M.A., Vyborny, C.J., Mendelson, E.B.: Computerized lesion detection on breast ultrasound. Medical Physics 29(7), 1438–1446 (2002)CrossRefGoogle Scholar
  4. 4.
    Drukker, K., Giger, M.L., Metz, C.E.: Robustness of computerized lesion detection and classification scheme across different breast us platforms. Radiology 237(3), 834–840 (2005)CrossRefGoogle Scholar
  5. 5.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2010 (VOC 2010) (2010), Results http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
  6. 6.
    Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  8. 8.
    Hao, Z., Wang, Q., Seong, Y.K., Lee, J.-H., Ren, H., Kim, J.-Y.: Combining CRF and multi-hypothesis detection for accurate lesion segmentation in breast sonograms. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 504–511. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Horsch, K., Giger, M.L., Venta, L.A., Vyborny, C.J.: Computerized diagnosis of breast lesions on ultrasound. Medical Physics 29(2), 157–164 (2002)CrossRefGoogle Scholar
  10. 10.
    Kutay, M.A., Petropulu, A.P., Piccoli, C.W.: Breast tissue characterization based on modeling of ultrasonic echoes using the power-law shot noise model. Pattern Recognition Letters 24(4-5), 741–756 (2003)CrossRefGoogle Scholar
  11. 11.
    Mogatadakala, K.V., Donohue, K.D., Piccoli, C.W., Forsberg, F.: Detection of breast lesion regions in ultrasound images using wavelets and order statistics. Medical Physics 33(4), 840–849 (2006)CrossRefGoogle Scholar
  12. 12.
    Shan, J., Cheng, H., Wang, Y.: Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound in Medicine and Biology 38(2), 262–275 (2012)CrossRefGoogle Scholar
  13. 13.
    Stavros, A., Thickman, D., Rapp, C., Dennis, M., Parker, S., Sisney, G.: Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 196(1), 123–134 (1995)Google Scholar
  14. 14.
    Yap, M.H., Edirisinghe, E.A., Bez, H.E.: A novel algorithm for initial lesion detection in ultrasound breast images. Journal of Applied Clinical Medical Physics 9(4), 181–199 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerard Pons
    • 1
  • Robert Martí
    • 1
  • Sergi Ganau
    • 2
  • Melcior Sentís
    • 2
  • Joan Martí
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversity of GironaGironaSpain
  2. 2.Radiology DeptartmentUDIAT-Centre Diagnòstic, Corporació Parc TaulíSabadellSpain

Personalised recommendations