Bag-of-Words and Topic Modeling-Based Sport Video Analysis

  • Sergio Rodríguez-Pérez
  • Raul Montoliu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)


This paper presents a method to perform team activity recognition in handball videos by using low level motion related features (position and direction of the motion), where a tracking process is not needed. Bag-of-words and topic modeling-based techniques have been used to characterize each video clip. Several parameter configurations have been tested to select the ones producing the best performance. An ensemble of selected classifiers has been constructed to obtain an overall accuracy rate of 98.38% in the recognition task among four different team activities.


Sport video analysis Team activity recognition Topic models Bag-of-words 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  2. 2.
    Direkoǧlu, C., O’Connor, N.E.: Team activity recognition in sports. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 69–83. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Blunsden, S., Fisher, B., Andrade, E.: Recognition of coordinated multi agent activities: the individual vs the group. In: Proc. of CVBASE 2006, pp. 61–70 (2006)Google Scholar
  4. 4.
    Perse, M., Kristan, M., Kovacic, S., Vuckovic, G., Pers, J.: A trajectory-based analysis of coordinated team activity in a basketball game. Computer Vision and Image Understanding 113(5), 612–621 (2009)CrossRefGoogle Scholar
  5. 5.
    Wang, X., Ma, X., Grimson, W.: Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans. on Analysis and Machine Intelligence 31(3), 539–555 (2009)CrossRefGoogle Scholar
  6. 6.
    Farrahi, K., Gatica-Perez, D.: Discovering routines from large-scale human locations using probabilistic topic models. ACM Trans. on Intelligent Systems and Technology 2, 3:1–3:27 (2011)CrossRefGoogle Scholar
  7. 7.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. of IEEE CVPR 2005, vol. 2, pp. 524–531 (June 2005)Google Scholar
  8. 8.
    Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. of IEEE ICCV 2005 (2005)Google Scholar
  9. 9.
    Niebles, J., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision 79, 299–318 (2008)CrossRefGoogle Scholar
  10. 10.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  11. 11.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. on Information Theory 13(1), 21–27 (1967)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 1st edn. Cambridge University Press (2000)Google Scholar
  13. 13.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly (2008)Google Scholar
  14. 14.
    Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Trans. on Neural Networks 13, 415–425 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergio Rodríguez-Pérez
    • 1
  • Raul Montoliu
    • 1
  1. 1.Institute of New Imaging Technologies (INIT)Jaume I UniversityCastellónSpain

Personalised recommendations