A Vision-Based Dual Anticipatory/Reactive Control Architecture for Indoor Navigation of an Unmanned Aerial Vehicle Using Visual Topological Maps

  • Darío Maravall
  • Javier de Lope
  • Juan Pablo Fuentes Brea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)

Abstract

Indoor navigation of an unmanned aerial vehicle is the topic of this article. A dual feedforward/feedback architecture has been used as the UAV´s controller and the K-NN classifier using the gray level image histogram as discriminant variables has been applied for landmarks recognition. After a brief description of the aerial vehicle we identify the two main components of its autonomous navigation, namely, the landmark recognition and the controller. Afterwards, the paper describes the experimental setup and discusses the experimental results centered mainly on the basic UAV´s behavior of landmark approximation which in topological navigation is known as the beaconing or homing problem.

Keywords

Unmanned Aerial Vehicles Vision-based dual anticipatory reactive controllers Nearest Neighbors Methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawato, M.: Feedback-Error-Learning Neural Network for Supervised Motor Learning. In: Advanced Neural Computers (1990)Google Scholar
  2. 2.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Network 11, 1317–1329 (1998)CrossRefGoogle Scholar
  3. 3.
    Kawato, M.: Internal models for motor control and trajectory planning. Neurobiology 9, 718–727 (1999)Google Scholar
  4. 4.
    Imamizu, H., Kawato, M., et al.: Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000)CrossRefGoogle Scholar
  5. 5.
    Maravall, D., de Lope, J.: Multi-objective dynamic optimization with genetic algorithms for automatic parking. Soft Computing 11(3), 249–257 (2007)CrossRefGoogle Scholar
  6. 6.
    Barlow, J.S.: The Cerebellum and Adaptive Control. Cambridge University Press (2002)Google Scholar
  7. 7.
    Maravall, D., de Lope, J., Fuentes, J.P.: Fusion of probabilistic knowledge-based classification rules and learning automata for automatic recognition of digital images. Pattern Recognition Letters (in press, 2013)Google Scholar
  8. 8.
    Piskorski, S., Brulez, N., D’Haeyer, F.: AR.Drone Developer Guide SDK 2.0, Parrot (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Darío Maravall
    • 1
    • 2
  • Javier de Lope
    • 1
    • 2
  • Juan Pablo Fuentes Brea
    • 1
    • 2
  1. 1.Department of Artificial Intelligence, Faculty of Computer ScienceUniversidad Politécnica de MadridMadridSpain
  2. 2.Centro de Automática y Robótica (UPM-CSIC)Universidad Politécnica de MadridMadridSpain

Personalised recommendations