Reactive Navigation and Online SLAM in Autonomous Frontier-Based Exploration

  • Raúl Arnau Prieto
  • José Manuel Cuadra-Troncoso
  • José Ramón Álvarez-Sánchez
  • Israel Navarro Santosjuanes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


This paper describes an autonomous exploration algorithm for mobile robots. The method implements a frontier-based exploration strategy that relies on a reactive navigation system and a SLAM algorithm. Despite its strong biological inspiration, the navigation method is specially well suited for the exploration task since it is able to accept and follow higher level position targets while guaranteeing the integrity of the robot. The SLAM module is intended for online execution, but it is able to solve the entire path of the robot in real-time. The hierarchical nature of the SLAM algorithm allows for drift modeling and reduction, which achieves very good resolution maps directly from laser measurements, without extracting landmarks or correction steps. The exploration strategy attempts to exploit the benefits of both the mapping and the navigation algorithms, providing a basic framework for more sophisticated autonomous behaviors.


Mobile Robot Information Gain Exploration Strategy Exploration Rate Robot Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., et al.: Coordination for multi-robot exploration and mapping. In: Proceedings of the AAAI National Conference on Artificial Intelligence. AAAI (2000)Google Scholar
  2. 2.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence, Robotics and Automation, pp. 146–151 (1997)Google Scholar
  3. 3.
    Sánchez, J.R.Á., de la Paz López, F., Troncoso, J.M.C., de Santos Sierra, D.: Reactive navigation in real environments using partial center of area method. Robotics and Autonomous Systems 58, 1231–1237 (2010)CrossRefGoogle Scholar
  4. 4.
    Álvarez-Sánchez, J.R., de la Paz Lépez, F., Troncoso, J.M.C., Sánchez, J.I.R.: Partial center of area method used for reactive autonomous robot navigation. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 408–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Álvarez, J.R., de la Paz, F., Mira, J.: On Virtual Sensory Coding: An Analytical Model of the Endogenous Representation. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 526–539. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Thrun, S.B.: Efficient exploration in reinforcement learning. Technical report, Carnegie-Mellon University (1992)Google Scholar
  7. 7.
    Thrun, S., Burgard, W., Fox, D., Hexmoor, H., Mataric, M.: A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 29–53 (1998)Google Scholar
  8. 8.
    Eliazar, A.I., Parr, R.: Hierarchical linear/constant time slam using particle filters for dense maps. In: Advances in Neural Information Processing Systems 18, pp. 339–346 (2006)Google Scholar
  9. 9.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598. AAAI (2002)Google Scholar
  10. 10.
    Murphy, K.P.: Bayesian map learning in dynamic environments. In: NIPS, pp. 1015–1021 (1999)Google Scholar
  11. 11.
    Thrun, S.: Particle filters in robotics. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, UAI 2002, University of Alberta, Edmonton, Alberta, Canada, August 1-4, pp. 511–518. Morgan Kaufmann (2002)Google Scholar
  12. 12.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI, Acapulco, Mexico. IJCAI (2003)Google Scholar
  13. 13.
    Thrun, S.B., Möller, K.: Active exploration in dynamic environments (1992)Google Scholar
  14. 14.
    Fox, D., Burgard, W., Thrun, S.: Active markov localization for mobile robots. Robotics and Autonomous Systems 25, 195–207 (1998)CrossRefGoogle Scholar
  15. 15.
    Visser, A., Xingrui-Ji, van Ittersum, M., González Jaime, L.A., Stancu, L.A.: Beyond frontier exploration. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 113–123. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  17. 17.
    Eliazar, A., Parr, R.: Dp-slam: Fast, robust simultaneous localization and mapping without predetermined landmarks. In: Proc. 18th Int. Joint Conf. on Artificial Intelligence, IJCAI 2003, pp. 1135–1142. Morgan Kaufmann (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raúl Arnau Prieto
    • 1
  • José Manuel Cuadra-Troncoso
    • 1
  • José Ramón Álvarez-Sánchez
    • 1
  • Israel Navarro Santosjuanes
    • 1
  1. 1.Dpto. de Inteligencia ArtificialUNEDMadridSpain

Personalised recommendations