Advertisement

Urban Traffic Surveillance in Smart Cities Using Radar Images

  • J. Sánchez-Oro
  • David Fernández-López
  • R. Cabido
  • Antonio S. Montemayor
  • Juan José Pantrigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)

Abstract

The Smart City concept arises from the need to provide more intelligent and optimized applications for the development of future urban centers. Traffic monitoring including surveillance is becoming a problem as cities are getting larger and crowded with vehicles. Intelligent video applications for outdoor scenarios need for good quality, stable and robust signal in every moment or climate condition. In this paper we present a radar signal surveillance application that works in real-time, in 360 degrees, with long range up to 400 meters away from the detector, with daylight or night, or even with adverse climatology like fog presence, detecting and tracking high speed vehicles in urban areas.

Keywords

smart city particle filter computer vision radar processing visual tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP Journal on Image and Video Processing 2008(1), 1–10 (2008)CrossRefGoogle Scholar
  2. 2.
    Cabido, R., Montemayor, A.S., Pantrigo, J.J., Payne, B.R.: Multiscale and local search methods for real time region tracking with particle filters: local search driven by adaptive scale estimation on GPUs. Machine Vision & Applications 21(1), 43–58 (2009)CrossRefGoogle Scholar
  3. 3.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings F. Radar and Singal Processing 140(2), 107–113 (1993)CrossRefGoogle Scholar
  4. 4.
    Jing, L., Vadakkepat, P.: Interacting MCMC particle filter for tracking maneuvering target. Digital Signal Processing 22(1), 54–65 (2010)Google Scholar
  5. 5.
    Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics and protocol. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 319–336 (2009)CrossRefGoogle Scholar
  6. 6.
    Lanterman, A.D.: Passive radar imaging and target recognition using illuminators of opportunity. In: RTO SET Symposium on “Target Identification and Recognition Using RF Systems” (2004)Google Scholar
  7. 7.
    Pantrigo, J.J., Sánchez, A., Mira, J.: Representation spaces in a visual based human action recognition system. Neurocomputing 72(4-6), 901–915 (2009)CrossRefGoogle Scholar
  8. 8.
    Porikli, F., Ivanov, Y., Haga, T.: Robust abandoned object detection using dual foregrounds. EURASIP J. Adv. Signal Process 2008 (2008)Google Scholar
  9. 9.
    Rossi, C., Abderrahim, M., Dìaz, J.C.: Tracking moving optima using Kalman-based predictions. Evolutionary Computation 16(1), 1–30 (2008)CrossRefGoogle Scholar
  10. 10.
    Sánchez-Oro, J., Fernández-López, D., Cabido, R., Montemayor, A.S.: Radar-based road-traffic monitoring in urban environments. Digital Signal Processing 23(1), 364–374 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zotkin, D.N., Duraiswami, R., Davis, L.S.: Joint audio-visual tracking using particle filters. EURASIP Journal on Applied Signal Processing 2002(1), 1154–1164 (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Sánchez-Oro
    • 1
  • David Fernández-López
    • 1
  • R. Cabido
    • 1
  • Antonio S. Montemayor
    • 1
  • Juan José Pantrigo
    • 1
  1. 1.Dept. Ciencias de la ComputaciónUniversidad Rey Juan CarlosSpain

Personalised recommendations