Cancer Stem Cell Modeling Using a Cellular Automaton

  • Ángel Monteagudo
  • José Santos Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


We used a cellular automaton model for cancer growth simulation at cellular level, based on the presence of different cancer hallmarks acquired by the cells. The rules of the cellular automaton determine cell mitotic and apoptotic behaviors, which are based on the acquisition of the hallmarks in the cells by means of mutations. The simulation tool allows the study of the emergent behavior of tumor growth. This work focuses on the simulation of the behavior of cancer stem cells to inspect their capability of regeneration of tumor growth in different scenarios.


Cancer Stem Cell Cellular Automaton Telomere Length Cellular Automaton Healthy Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artificial Life 12(4), 617–634 (2006)CrossRefGoogle Scholar
  2. 2.
    Basanta, D., Ribba, B., Watkin, E., You, B., Deutsch, A.: Computational analysis of the influence of the microenvironment on carcinogenesis. Mathematical Biosiciences 229, 22–29 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Enderling, H., Hahnfeldt, P.: Cancer stem cells in solid tumors: Is ’evading apoptosis’ a hallmark of cancer? Progress in Biophysics and Molecular Biology 106, 391–399 (2011)CrossRefGoogle Scholar
  4. 4.
    Gibbs, W.W.: Untangling the roots of cancer. Scientific American 289, 56–65 (2003)CrossRefGoogle Scholar
  5. 5.
    Gil, J., Stembalska, A., Pesz, K.A., Sasiadek, M.M.: Cancer stem cells: the theory and perspectives in cancer therapy. J. App. Genet. 49(2), 193–199 (2008)CrossRefGoogle Scholar
  6. 6.
    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)CrossRefGoogle Scholar
  7. 7.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011)CrossRefGoogle Scholar
  8. 8.
    Kansal, A.R., et al.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. Journal of Theoretical Biology 203, 367–382 (2000)CrossRefGoogle Scholar
  9. 9.
    Monteagudo, Á., Santos, J.: A cellular automaton model for tumor growth simulation. In: Rocha, M.P., Luscombe, N., Fdez-Riverola, F., Rodríguez, J.M.C. (eds.) 6th International Conference on PACBB. AISC, vol. 154, pp. 147–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Morton, C.I., et al.: Non-stem cancer cell kinetics modulate solid tumor progression. Theoretical Biology and Medical Modelling 8, 48 (2011)CrossRefGoogle Scholar
  11. 11.
    Patel, M., Nagl, S.: The role of model integration in complex systems. An example from cancer biology. Springer (2010)Google Scholar
  12. 12.
    Rejniak, K.A., Anderson, A.R.A.: Hybrid models of tumor growth. WIREs Syst. Biol. Med. 3, 115–125 (2010)CrossRefGoogle Scholar
  13. 13.
    Santos, J., Monteagudo, Á.: Study of cancer hallmarks relevance using a cellular automaton tumor growth model. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 489–499. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Sottoriva, A., et al.: Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Research 70(1), 46–56 (2010)CrossRefGoogle Scholar
  15. 15.
    Spencer, S.L., Gerety, R.A., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Computational Biology 2(8), 939–947 (2006)CrossRefGoogle Scholar
  16. 16.
    Vainstein, V., et al.: Strategies for cancer stem cell elimination: Insights from mathematical modeling. Journal of Theoretical Biology 298, 32–41 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wodarz, D., Komarova, N.: Can loss of apoptosis protect against cancer? Trends in Genetics 23(5), 232–237 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ángel Monteagudo
    • 1
  • José Santos Reyes
    • 1
  1. 1.Computer Science DepartmentUniversity of A CoruñaSpain

Personalised recommendations