Robust Multi-sensor System for Mobile Robot Localization

  • A. Canedo-Rodriguez
  • V. Alvarez-Santos
  • D. Santos-Saavedra
  • C. Gamallo
  • M. Fernandez-Delgado
  • Roberto Iglesias
  • C. V. Regueiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)

Abstract

In this paper, we propose a localization system that can combine data supplied by different sensors, even if they are not synchronized, or if they do not provide data at all times. Particularly, we have used the following sensors: a 2D laser range finder, a Wi-Fi positioning system (designed by us), and a magnetic compass. Real world experiments have shown that our algorithm is accurate, robust, and fast, and that it can take advantage of the strengths of each sensor, and minimise its weaknesses.

Keywords

Sensor fusion robot localization Wi-Fi positioning particle filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Santos, V., Canedo-Rodriguez, A., Iglesias, R., Pardo, X.M., Regueiro, C.V.: Route learning and reproduction in a tour-guide robot. In: Ferrández, J.M., Álvarez, J.R., de la Paz, F., Javier Toledo, F. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 112–121. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., et al.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. International Journal of Robotics Research 19(11), 972–999 (2000)CrossRefGoogle Scholar
  3. 3.
    Tardós, J.D., Neira, J., Newman, P.M., Leonard, J.J.: Robust mapping and localization in indoor environments using sonar data. The International Journal of Robotics Research 21(4), 311–330 (2002)CrossRefGoogle Scholar
  4. 4.
    Gamallo, C., Regueiro, C., Quintía, P., Mucientes, M.: Omnivision-based kld-monte carlo localization. Robotics and Autonomous Systems 58(3), 295–305 (2010)CrossRefGoogle Scholar
  5. 5.
    Canedo-Rodriguez, A., Santos-Saavedra, D., Alvarez-Santos, V., Regueiro, C.V., Iglesias, R., Pardo, X.M.: Analysis of different localization systems suitable for a fast and easy deployment of robots in diverse environments. In: Workshop of Physical Agents, pp. 39–46 (2012)Google Scholar
  6. 6.
    Gutmann, J.-S., Fox, D.: An experimental comparison of localization methods continued. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 454–459. IEEE (2002)Google Scholar
  7. 7.
    Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)MATHGoogle Scholar
  8. 8.
    Pollard, D.: A user’s guide to measure theoretic probability, vol. 8. Cambridge University Press (2001)Google Scholar
  9. 9.
    Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27 (2011)CrossRefGoogle Scholar
  10. 10.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)CrossRefGoogle Scholar
  11. 11.
    Canedo-Rodriguez, A., Iglesias, R., Regueiro, C.V., Alvarez-Santos, V., Pardo, X.M.: Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments. Sensors 13(1), 426–454 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Canedo-Rodriguez
    • 1
  • V. Alvarez-Santos
    • 1
  • D. Santos-Saavedra
    • 1
  • C. Gamallo
    • 1
  • M. Fernandez-Delgado
    • 1
  • Roberto Iglesias
    • 1
  • C. V. Regueiro
    • 2
  1. 1.CITIUS (Centro Singular de Investigación en Tecnoloxías da Información)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Electronics and SystemsUniversidade da CoruñaA CoruñaSpain

Personalised recommendations