Ant Colony Algorithms for the Dynamic Vehicle Routing Problem with Time Windows

  • Barry van Veen
  • Michael Emmerich
  • Zhiwei Yang
  • Thomas Bäck
  • Joost Kok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)

Abstract

The Vehicle Routing Problem with Time Windows relates to frequently occuring real world problems in logistics. Much work has been done on solving static routing problems but solving the dynamic variants has not been given an equal amount of attention, while these are even more relevant to most companies in logistics and transportation. In this work an Ant Colony Optimization algorithm for solving the Dynamic Vehicle Routing Problem with Time Windows is proposed. Customers and time windows are inserted during the working day and need to be integrated in partially committed solutions. Results are presented on a benchmark that generalizes Solomon’s classical benchmark with varying degrees of dynamicity and different variants, including pheromone preservation and the min-max ant system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing problem. Advanced Engineering Informatics 18(1), 41–48 (2004)CrossRefGoogle Scholar
  2. 2.
    Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12(4), 568–581 (1964)CrossRefGoogle Scholar
  3. 3.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Varela, F., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, Paris, France, pp. 134–142. Elsevier (1991)Google Scholar
  4. 4.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  5. 5.
    Eyckelhof, C.J., Snoek, M.: Ant systems for a dynamic TSP. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Flood, M.M.: The traveling-salesman problem. Operations Research 4(1), 61 (1956)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gambardella, L.M., Taillard, É., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: New Ideas in Optimization, ch. 5, pp. 63–76. McGraw-Hill (1999)Google Scholar
  8. 8.
    Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, É.: Parallel tabu search for real-time vehicle routing and dispatching. Transportation Science 33(4), 381 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: a study of scenarios. Technical Report APES-06-1998, University of Strathclyde (September 1998)Google Scholar
  11. 11.
    Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V.: Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization 10, 327–343 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Psaraftis, H.N.: Dynamic vehicle routing: Status and prospects. Annals of Operations Research 61, 143–164 (1995)MATHCrossRefGoogle Scholar
  13. 13.
    Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Stützle, T., Hoos, H.: Max-min ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation, pp. 309–314 (April 1997)Google Scholar
  15. 15.
    Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.: A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science 31(2), 170 (1997)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Barry van Veen
    • 1
  • Michael Emmerich
    • 1
  • Zhiwei Yang
    • 1
  • Thomas Bäck
    • 1
  • Joost Kok
    • 1
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations