Advertisement

Simple Matrix Scheme for Encryption

  • Chengdong Tao
  • Adama Diene
  • Shaohua Tang
  • Jintai Ding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7932)

Abstract

There are several attempts to build asymmetric pubic key encryption schemes based on multivariate polynomials of degree two over a finite field. However, most of them are insecure. The common defect in many of them comes from the fact that certain quadratic forms associated with their central maps have low rank, which makes them vulnerable to the MinRank attack. We propose a new simple and efficient multivariate pubic key encryption scheme based on matrix multiplication, which does not have such a low rank property. The new scheme will be called Simple Matrix Scheme or ABC in short. We also propose some parameters for practical and secure implementation.

Keywords

Multivariate Public Key Cryptosystem Simple Matrix Scheme MinRank Attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3-4), 235–265 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography. Advances in Information Security series. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its applications, vol. 20. Cambridge University PressGoogle Scholar
  15. 15.
    Moh, T.T.: A fast public key system with signature and master key functions. In: Proceedings of CrypTEC 1999, International Workshop on Cryptographic Techniques and E-Commerce, pp. 63–69. Hong-Kong City University Press (July 1999), http://www.usdsi.com/cryptec.ps
  16. 16.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  17. 17.
    Patarin, J.: The Oil and Vinegar Signature Scheme. Presented at the Dagstuhl Workshop on Cryptography (September 1997) (transparencies)Google Scholar
  18. 18.
    Patarin, J.: Cryptoanalysis of the Matsumoto and Imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126Google Scholar
  21. 21.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “Medium-Field” Multivariate Public-Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M., et al. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Thomae, E.: A Generalization of the Rainbow Band Separation Attack and its Applications to Multivariate Schemes. IACR Cryptology ePrint Archive (2012)Google Scholar
  25. 25.
    Buchmann, J.A., Ding, J., Mohamed, M.S.E., et al.: MutantXL: Solving multivariate polynomial equations for cryptanalysis. Symmetric Cryptography, 09031 (2009)Google Scholar
  26. 26.
    Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J., et al. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S., et al. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chengdong Tao
    • 1
  • Adama Diene
    • 2
  • Shaohua Tang
    • 1
  • Jintai Ding
    • 3
    • 4
  1. 1.South China University of TechnologyChina
  2. 2.Department of Math. SciencesUAE UniversityAl-AinUnited Arab Emirates
  3. 3.University of CincinnatiUSA
  4. 4.ChongQing UniversityChina

Personalised recommendations