Advertisement

A Classification of Differential Invariants for Multivariate Post-quantum Cryptosystems

  • Ray Perlner
  • Daniel Smith-Tone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7932)

Abstract

Multivariate Public Key Cryptography(MPKC) has become one of a few options for security in the quantum model of computing. Though a few multivariate systems have resisted years of effort from the cryptanalytic community, many such systems have fallen to a surprisingly small pool of techniques. There have been several recent attempts at formalizing more robust security arguments in this venue with varying degrees of applicability. We present an extension of one such recent measure of security against a differential adversary which has the benefit of being immediately applicable in a general setting on unmodified multivariate schemes.

Keywords

Matsumoto-Imai multivariate public key cryptography differential symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, A.I.T., Chen, M.S., Chen, T.R., Cheng, C.M., Ding, J., Kuo, E.L.H., Lee, F.Y.S., Yang, B.Y.: Sse implementation of multivariate pkcs on modern x86 cpus. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-sized instances of multivariate pKCs: Rainbow, TTS, and ℓIC-derivatives. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing minimized multivariate PKC on low-resource embedded systems. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of uov and hfe signature schemes against chosen-message attack. In: [19], pp. 68–82.Google Scholar
  5. 5.
    Huang, Y.J., Liu, F.H., Yang, B.Y.: Public-key cryptography from new multivariate quadratic assumptions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 190–205. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-S.: Square, a New Multivariate Encryption Scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Baena, J., Clough, C., Ding, J.: Square-vinegar signature scheme. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kipnis, A., Shamir, A.: Cryptanalysis of the oil & vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Smith-Tone, D.: On the differential security of multivariate public key cryptosystems. In: [19], pp. 130–142.Google Scholar
  12. 12.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  14. 14.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Patarin, J.: The oil and vinegar algorithm for signatures. In: Presented at the Dagsthul Workshop on Cryptography (1997)Google Scholar
  16. 16.
    Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH be repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic hfe variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Ding, J., Kleinjung, T.: Degree of regularity for hfe-. IACR Cryptology ePrint Archive 2011, 570 (2011)Google Scholar
  19. 19.
    Yang, B.-Y. (ed.): PQCrypto 2011. LNCS, vol. 7071. Springer, Heidelberg (2011)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ray Perlner
    • 1
  • Daniel Smith-Tone
    • 1
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations