Uniform Approach to Concept Interpretation, Active Contour Methods and Case-Based Reasoning

  • Piotr S. Szczepaniak
  • Arkadiusz Tomczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7895)


Active contours are methods for data analysis originally developed for image segmentation. They can be treated as contextual classifiers that use expert knowledge and operate in supervised or unsupervised mode. Recently there have been developed many generalizations and extensions of those methods. One of them, proposed by the authors of this paper, reveals that they can be interpreted as methods capable of identification of more complicated structures (concepts) basing on simpler ones. In the present paper, a simple model for concept identification is presented and elucidated both in terms of active contour methods and case-based reasoning approach. The application area is any kind of data (e.g. medical images or image sequences, or even the web source data [4]) assuming they fulfill weak formal requirements.


active contours case-based reasoning expert knowledge concept interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, M.P.: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
  2. 2.
    Devijver, P.A., Kittler, J.: Pattern Recognition. In: A Statistical Approach, Prentice-Hall, Inc., Englewood Cliffs (1982)Google Scholar
  3. 3.
    Pedrycz, W.: Knowledge-Based Clustering. In: From Data to Information Granules. Wiley, Hoboken (2005)Google Scholar
  4. 4.
    Szczepaniak, P.S., Tomczyk, A., Pryczek, M.: Supervised Web Document Classification Using Discrete Transforms, Active Hypercontours and Expert Knowledge. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 305–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. Journal of Computer Vision 22(1), 61–79 (2000)CrossRefGoogle Scholar
  6. 6.
    Grzeszczuk, R., Levin, D.: Brownian Strings: Segmenting Images with Stochastically Deformable Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(10), 100–1013 (1997)CrossRefGoogle Scholar
  7. 7.
    Kass, M., Witkin, W., Terzopoulos, S.: Snakes: Active Contour Models. Int. Journal of Computer Vision 1(4), 321–333 (1988)CrossRefGoogle Scholar
  8. 8.
    Tomczyk, A., Szczepaniak, P.S.: Adaptive potential active contours. Pattern Analysis and Application 14, 425–440 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tomczyk, A.: Active Hypercontours and Contextual Classification. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, ISDA 2005, pp. 256–261. IEEE Computer Society Press, Wroclaw (2005)Google Scholar
  10. 10.
    Tomczyk, A., Szczepaniak, P.S.: Adaptive Potential Active Hypercontours. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 692–701. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Pal, S.K., Dillon, T.S., Yeung, D.S. (eds.): Soft Computing in Case-Based Reasoning. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Perner, P. (ed.): Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  14. 14.
    Tomczyk, A., Szczepaniak, P.S.: Contribution of Active Contour Approach to Image Understanding Proceedings of the 2007 IEEE International Workshop on Imaging Systems and Techniques (IST), CD version only, ISBN: 1-3244-0965-9 (2007)Google Scholar
  15. 15.
    Tomczyk, A., Szczepaniak, P.S.: On the Relationship between Active Contours and Contextual Classification. In: Kurzyski, M., et al. (eds.) Computer Recognition Systems Proceedings of the 4th Int. Conference on Computer Recognition Systems, CORES 2005, pp. 303–310. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Tomczyk, A., Pryczek, M., Walczak, S., Jojczyk, K., Szczepaniak, P.S.: Spatch Based Active Partitions with Linguistically Formulated Energy. Journal of Applied Computer Science 18(1), 87–115 (2010)Google Scholar
  17. 17.
    Pryczek, M., Tomczyk, A., Szczepaniak, P.S.: Active Partition Based Medical Image Understanding with Self Organized, Competitive Spatch Eduction. Journal of Applied Computer Science 18(2), 67–78 (2010)Google Scholar
  18. 18.
    Jojczyk, K., Pryczek, M., Tomczyk, A., Szczepaniak, P.S., Grzelak, P.: Cognitive Hierarchical Active Partitions using Patch Approach. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 35–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Tomczyk, A., Szczepaniak, P.S., Pryczek, M.: Cognitive hierarchical active partitions in distributed analysis of medical images. Journal of Ambient Intelligence and Humanized Computing, 1–11 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Piotr S. Szczepaniak
    • 1
  • Arkadiusz Tomczyk
    • 1
  1. 1.Institute of Information TechnologyLodz University of TechnologyLodzPoland

Personalised recommendations