Parallel Neuro-Tabu Search Algorithm for the Job Shop Scheduling Problem

  • Wojciech Bożejko
  • Mariusz Uchroński
  • Mieczysław Wodecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7895)

Abstract

We propose two parallel algorithms based on neuro-tabu search method, designed to solve the jobs shop problem of scheduling. The fist algorithm is based on independent runs of the neuro-tabu with different starting points. The second one uses sophisticated diversification method based on path-relinking methodology applied to the set of elite solutions. Proposed approaches are especially effective for the instances of large size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E.: Parallel Metaheuristics. A New Class of Algorithms. Wiley & Sons Inc. (2005)Google Scholar
  2. 2.
    Armentano, V.A., Scrich, C.R.: Tabu search for minimizing total tardiness in a job shop. International Journal of Production Economics 63(2), 131–140 (2000)CrossRefGoogle Scholar
  3. 3.
    Bożejko, W.: A new class of parallel scheduling algorithms, pp. 1–280. Wroclaw University of Technology Publishing House (2010)Google Scholar
  4. 4.
    Bożejko, W.: On single-walk parallelization of the job shop problem solving algorithms. Computers & Operations Research 39, 2258–2264 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bożejko, W., Uchroński: Distributed Tabu Search Algorithm for the Job Shop Problem. In: Proceedings of the 14th International Asia Pacific Conference on Computer Aided System Theory 6th to 8th Sydney, Australia, February 6-8 (2012)Google Scholar
  6. 6.
    Bożejko, W., Uchroński, M.: A Neuro-Tabu Search Algorithm for the Job Shop Problem. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 387–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bożejko, W., Uchroński, M., Wodecki, M.: Parallel Meta2heuristics for the Flexible Job Shop Problem. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 395–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research 41, 157–183 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Brooks Jr., F.P.: The Mythical Man-Month, anniversary edition. Addison-Wesley, Reading (1995)Google Scholar
  10. 10.
    Bushee, D.C., Svestka, J.A.: A bi-directional scheduling approach for job shops. International Journal of Production Research 37(16), 3823–3837 (1999)MATHCrossRefGoogle Scholar
  11. 11.
    Crainic, T.G., Toulouse, M., Gendreau, M.: Parallel asynchronous tabu search in multicommodity locationallocation with balancing requirements. Annals of Operations Research 63, 277–299 (1995)CrossRefGoogle Scholar
  12. 12.
    Dauzère-Pérès, S., Pauli, J.: An integrated approach for modeling and solving the general multiprocessor job shop scheduling problem using tabu search. Annals of Operations Research 70(3), 281–306 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Diaconis, P.: Group Representations in Probability and Statistics. Lecture Notes - Mono-graph Series, vol. 11. Institute of Mathematical Statistics, Harvard University (1988)MATHGoogle Scholar
  14. 14.
    Flynn, M.J.: Very highspeed computing systems. Proceedings of the IEEE 54, 1901–1909 (1966)CrossRefGoogle Scholar
  15. 15.
    Gao, J., Sun, L., Gen, M.: A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research 35, 2892–2907 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Grabowski, J.: Generalized problems of operations sequencing in the discrete production systems, Monographs 9, Scientific Papers of the Institute of Technical Cybernetics of Wrocław Technical University (1979)Google Scholar
  17. 17.
    Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the job shop problem. In: Rego, C., Alidaee, B. (eds.) Adaptive Memory and Evolution, Tabu Search and Scatter Search, Kluwer Academic Publishers, Dordrecht (2005)Google Scholar
  18. 18.
    Hanafi, S.: On the Convergence of Tabu Search. Journal of Heuristics 7, 47–58 (2000)CrossRefGoogle Scholar
  19. 19.
    Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: further developments. Production Planning and Control 11, 171–178 (2000)CrossRefGoogle Scholar
  20. 20.
    Hurink, E., Jurisch, B., Thole, M.: Tabu search for the job shop scheduling problem with Multi-purpose machine, Oper. Res. Spektrum 15, 205–215 (1994)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jain, A.S., Rangaswamy, B., Meeran, S.: New and stronger job-shop neighborhoods: A focus on the method of Nowicki and Smutnicki (1996). Journal of Heuristics 6(4), 457–480 (2000)MATHCrossRefGoogle Scholar
  22. 22.
    Jia, H.Z., Nee, A.Y.C., Fuh, J.Y.H., Zhang, Y.F.: A modified genetic algorithm for distributed scheduling problems. International Journal of Intelligent Manufacturing 14, 351–362 (2003)CrossRefGoogle Scholar
  23. 23.
    Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 32(1), 1–13 (2002)CrossRefGoogle Scholar
  24. 24.
    Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the Flexible Job-schop Scheduling Problem. Computers & Operations Research 35, 3202–3212 (2008)MATHCrossRefGoogle Scholar
  25. 25.
    Mastrolilli, M., Gambardella, L.M.: Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling 3(1), 3–20 (2000)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Mattfeld, D.C., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling with tardiness objectives. European Journal of Operational Research 155(3), 616–630 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem. Journal of Scheduling 8(2), 145–159 (2005)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42, 797–813 (1996)MATHCrossRefGoogle Scholar
  29. 29.
    Pauli, J.: A hierarchical approach for the FMS schduling problem. European Journal of Operational Research 86(1), 32–42 (1995)CrossRefGoogle Scholar
  30. 30.
    Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for the job-shop scheduling problem. European Journal of Operational Research 120, 297–310 (2000)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  32. 32.
    Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)CrossRefGoogle Scholar
  33. 33.
    Voß, S.: Tabu search: Applications and prospects. In: Du, D.Z., Pardalos, P.M. (eds.) Network Optimization Problems, pp. 333–353. World Scientific Publishing Co., Singapore (1993)Google Scholar
  34. 34.
    Wang, T.Y., Wu, K.B.: An eficient configuration generation mechanism to solve job shop scheduling problems by the simulated annealing. International Journal of Systems Science 30(5), 527–532 (1999)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wojciech Bożejko
    • 1
  • Mariusz Uchroński
    • 2
  • Mieczysław Wodecki
    • 3
  1. 1.Institute of Computer Engineering, Control and RoboticsWrocław University of TechnologyWrocławPoland
  2. 2.Wrocław Centre of Networking and SupercomputingWrocławPoland
  3. 3.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations