A Timed Component Algebra for Services
Conference paper
- 2 Citations
- 546 Downloads
Abstract
We present a component algebra for services that can guarantee time-related properties. The components of this algebra are networks of processes that execute according to time constraints and communicate asynchronously through channels that can delay messages. We characterise a sub-class of consistent networks give sufficient conditions for that class to be closed under composition. Finally, we show how those conditions can be checked, at design time, over timed I/O automata as orchestrations of services, thus ensuring that, when binding a client with a supplier service at run time, the orchestrations of the two services can work together as interconnected without further checks.
Keywords
Time Sequence Design Time Incoming Message Interface Theory Outgoing Message
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82(2), 253–284 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2(3), 117–126 (1987)zbMATHCrossRefGoogle Scholar
- 3.Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
- 4.Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 5.Chilton, C., Kwiatkowska, M.Z., Wang, X.: Revisiting timed specification theories: A linear-time perspective. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 75–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 6.David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC, pp. 91–100. ACM (2010)Google Scholar
- 7.de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 8.Díaz, G., Pardo, J.J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification of web services with timed automata. Electr. Notes Theor. Comput. Sci. 157(2), 19–34 (2006)CrossRefGoogle Scholar
- 9.Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 18–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 10.Fiadeiro, J.L., Lopes, A.: Consistency of service composition. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 63–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 11.Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis. In: ICWS, pp. 213–221. IEEE (2009)Google Scholar
- 12.Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Morgan & Claypool Publishers (2006)Google Scholar
- 14.Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and computation of timed properties in web. In: ICWS, pp. 497–504. IEEE Computer Society (2006)Google Scholar
- 15.Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 16.Lapadula, A., Pugliese, R., Tiezzi, F.: C-clock-WS: A timed service-oriented calculus. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 275–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 17.Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 18.Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)Google Scholar
Copyright information
© IFIP International Federation for Information Processing 2013