Advertisement

A Timed Component Algebra for Services

  • Benoît Delahaye
  • José Luiz Fiadeiro
  • Axel Legay
  • Antónia Lopes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7892)

Abstract

We present a component algebra for services that can guarantee time-related properties. The components of this algebra are networks of processes that execute according to time constraints and communicate asynchronously through channels that can delay messages. We characterise a sub-class of consistent networks give sufficient conditions for that class to be closed under composition. Finally, we show how those conditions can be checked, at design time, over timed I/O automata as orchestrations of services, thus ensuring that, when binding a client with a supplier service at run time, the orchestrations of the two services can work together as interconnected without further checks.

Keywords

Time Sequence Design Time Incoming Message Interface Theory Outgoing Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82(2), 253–284 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2(3), 117–126 (1987)zbMATHCrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chilton, C., Kwiatkowska, M.Z., Wang, X.: Revisiting timed specification theories: A linear-time perspective. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 75–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC, pp. 91–100. ACM (2010)Google Scholar
  7. 7.
    de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Díaz, G., Pardo, J.J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification of web services with timed automata. Electr. Notes Theor. Comput. Sci. 157(2), 19–34 (2006)CrossRefGoogle Scholar
  9. 9.
    Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 18–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fiadeiro, J.L., Lopes, A.: Consistency of service composition. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 63–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis. In: ICWS, pp. 213–221. IEEE (2009)Google Scholar
  12. 12.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Morgan & Claypool Publishers (2006)Google Scholar
  14. 14.
    Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and computation of timed properties in web. In: ICWS, pp. 497–504. IEEE Computer Society (2006)Google Scholar
  15. 15.
    Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Lapadula, A., Pugliese, R., Tiezzi, F.: C-clock-WS: A timed service-oriented calculus. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 275–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Benoît Delahaye
    • 1
  • José Luiz Fiadeiro
    • 2
  • Axel Legay
    • 1
  • Antónia Lopes
    • 3
  1. 1.INRIA/IRISARennesFrance
  2. 2.Dep. of Computer ScienceRoyal Holloway, University of LondonUK
  3. 3.Dep. of Informatics, Faculty of SciencesUniversity of LisbonPortugal

Personalised recommendations