Improvements in Modelling of Complex Manufacturing Processes Using Classification Techniques

  • Pedro Santos
  • Jesús Maudes
  • Andrés Bustillo
  • Juan José Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7906)


The improvement of certain manufacturing processes often involves the challenge of how to optimize complex and multivariable processes under industrial conditions. Moreover, many of these processes can be treated as regression or classification problems. Although their outputs are in the form of continuous variables, industrial requirements define their discretization in compliance with ISO 4288:1996 Standard. Laser polishing of steel components is an interesting example of such a problem, especially its application to finishing operations in the die and mould industry. The aim of this work is the identification of the most accurate classifier-based method for surface roughness prediction of laser polished components in compliance with the aforementioned industrial standard. Several data mining methods are tested for this task: ensembles of decision trees, classification via regression, and fine-tuned SVMs. These methods are also tested by using variants that take into account the ordinal nature of the class that has to be predicted. Finally, all these methods and variants are applied over different transformations of the dataset. The results of these methods show no significant differences in accuracy, meaning that a simple decision tree can be used for prediction purposes.


ensembles ordinal classification discretization process optimization laser polishing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breiman, L.: Heuristics of instability and stabilization in model selection. The Annals of Statistics 24(6), 2350–2383 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bustillo, A., Díez-Pastor, J., Quintana, G., García-Osorio, C.: Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations. The International Journal of Advanced Manufacturing Technology 57(5), 521–532 (2011)CrossRefGoogle Scholar
  3. 3.
    Bustillo, A., Sedano, J., Villar, J.R., Curiel, L., Corchado, E.: AI for modelling the laser milling of copper components. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 498–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bustillo, A., Ukar, E., Rodriguez, J., Lamikiz, A.: Modelling of process parameters in laser polishing of steel components using ensembles of regression trees. International Journal of Computer Integrated Manufacturing 24(8), 735–747 (2011)CrossRefGoogle Scholar
  5. 5.
    Bustillo, A., Villar, A., Gorritxategi, E., Ferreiro, S., Rodríguez, J.J.: Using ensembles of regression trees to monitor lubricating oil quality. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 199–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ciurana, J., Arias, G., Ozel, T.: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Materials and Manufacturing Processes 24(3), 358–368 (2009)CrossRefGoogle Scholar
  7. 7.
    Díez-Pastor, J., Bustillo, A., Quintana, G., García-Osorio, C.: Boosting projections to improve surface roughness prediction in high-torque milling operations. In: Soft Computing-A Fusion of Foundations, Methodologies and Applications, pp. 1–11 (2012)Google Scholar
  8. 8.
    Dubey, A., Yadava, V.: Laser beam machining – A review. International Journal of Machine Tools and Manufacture 48(6), 609–628 (2008)CrossRefGoogle Scholar
  9. 9.
    Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning, pp. 1022–1027 (1993)Google Scholar
  10. 10.
    Ferreiro, S., Sierra, B., Irigoien, I., Gorritxategi, E.: Data mining for quality control: Burr detection in the drilling process. Computers & Industrial Engineering 60(4), 801–810 (2011)CrossRefGoogle Scholar
  11. 11.
    Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Frank, E., Witten, I.: Making better use of global discretization (1999)Google Scholar
  13. 13.
    Freund, Y., Schapire, R., et al.: Experiments with a new boosting algorithm. In: Machine Learning-International Workshop, pp. 148–156. Morgan Kaufmann Publishers, Inc. (1996)Google Scholar
  14. 14.
    Grzenda, M., Bustillo, A., Zawistowski, P.: A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 1–11 (2012)Google Scholar
  15. 15.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  16. 16.
    International Organization for Standardization: ISO-4288. Geometrical Product Specifications (GPS): Rules and procedures for the assessment of surface texture (1996)Google Scholar
  17. 17.
    International Organization for Standardization: ISO-4287. Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters (1997)Google Scholar
  18. 18.
    Kohavi, R., Wolpert, D., et al.: Bias plus variance decomposition for zero-one loss functions. In: Machine Learning-International Workshop, pp. 275–283. Morgan Kaufmann Publishers Inc., San Francisco (1996)Google Scholar
  19. 19.
    Kramer, S., Widmer, G., Pfahringer, B., Groeve, M.: Prediction of ordinal classes using regression trees. Fundamenta Informaticae 47(1-2), 1–13 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kuncheva, L.: Combining pattern classifiers: methods and algorithms. Wiley-Interscience (2004),
  21. 21.
    Lamikiz, A., Sanchez, J., Lopez de Lacalle, L., Arana, J.: Laser polishing of parts built up by selective laser sintering. International Journal of Machine Tools and Manufacture 47(12), 2040–2050 (2007)CrossRefGoogle Scholar
  22. 22.
    Lü, L., Fuh, J., Wong, Y.: Laser-induced materials and processes for rapid prototyping. Springer (2001)Google Scholar
  23. 23.
    Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52(3), 239–281 (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  25. 25.
    Quintana, G., De Ciurana, J., Ribatallada, J.: Surface roughness generation and material removal rate in ball end milling operations. Materials and Manufacturing Processes 25(6), 386–398 (2010)CrossRefGoogle Scholar
  26. 26.
    Rodríguez, J., Kuncheva, L., Alonso, C.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)CrossRefGoogle Scholar
  27. 27.
    Santos, P., Villa, L.F., Reñones, A., Bustillo, A., Maudes, J.: Wind turbines fault diagnosis using ensemble classifiers. In: Perner, P. (ed.) ICDM 2012. LNCS, vol. 7377, pp. 67–76. Springer, Heidelberg (2012), doi:10.1007/978-3-642-31488-9_6CrossRefGoogle Scholar
  28. 28.
    Tuck, C., Hague, R., Ruffo, M., Ransley, M., Adams, P.: Rapid manufacturing facilitated customization. International Journal of Computer Integrated Manufacturing 21(3), 245–258 (2008)CrossRefGoogle Scholar
  29. 29.
    Vapnik, V.: The nature of statistical learning theory. Springer (1999)Google Scholar
  30. 30.
    Wu, X., Kumar, V.: The top ten algorithms in data mining, vol. 9. Chapman & Hall/CRC (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pedro Santos
    • 1
  • Jesús Maudes
    • 1
  • Andrés Bustillo
    • 1
  • Juan José Rodríguez
    • 1
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain

Personalised recommendations