Aerial Service Vehicles for Industrial Inspection: Task Decomposition and Plan Execution

  • Jonathan Cacace
  • Alberto Finzi
  • Vincenzo Lippiello
  • Giuseppe Loianno
  • Dario Sanzone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7906)


We propose an autonomous control system for Aerial Service Vehicles capable of performing inspection tasks in buildings and industrial plants. In this paper, we present the applicative domain, the high-level control architecture along with some empirical results. The system has been assessed on real-world and simulated scenarios representing an industrial environment.


Aerial Service Robotics High level Control Architecture Mixed Initiative Planning and Execution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EU Collaborative Project ICT-248669, AIRobots,
  2. 2.
    Allen, J., Ferguson, G.: Human-Machine Collaborative Planning. In: NASA Workshop on Planning and Scheduling for Space (2002)Google Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Bloesch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision Based MAV Navigation in Unknown and Unstructured Environments. In: ICRA, pp. 21–28 (2010)Google Scholar
  5. 5.
    Doherty, P., Kvarnström, J., Fredrik, H.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. In: AAMAS, pp. 332–377 (2009)Google Scholar
  6. 6.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3d Reconstruction in Real-time. In: IEEE Intelligent Vehicles Symposium, pp. 963–968 (2011)Google Scholar
  7. 7.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge Univ. Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hrabar, S.: Vision-Based 3D Navigation for an Autonomous Helicopter. Ph.D. Dissertation, University of S. California (2006)Google Scholar
  9. 9.
    Ingrand, F., Georgeff, M.P., Rao, A.S.: An architecture for Real-Time Reasoning and System Control. In: IEEE Expert: Intelligent Systems and Their Applications, pp. 34–44 (1992)Google Scholar
  10. 10.
    Lavalle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Computer Science Dept., Iowa State University, Tech. Rep. (1998)Google Scholar
  11. 11.
    Macfarlane, S.E., Croft, E.A.: Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Transactions on Robotics 19, 42–52 (2003)CrossRefGoogle Scholar
  12. 12.
    Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.: A machine learning approach for feature sensitive motion planning. In: Int. Workshop on the Algorithmic Foundations of Robotics (2004)Google Scholar
  13. 13.
    Holmes, S., Klein, G., Murray, D.W.: A square root unscented Kalman filter for visual monoSLAM. In: ICRA, pp. 3710–3716 (2008)Google Scholar
  14. 14.
    Naldi, R., Marconi, M., Gentili, L.: Modelling and control of a flying robot interacting with the environment. Journal of IFAC 47(12), 2571–2583 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rao, A.S., Georgeff, M.P.: Deliberation and its Role in the Formation of Intentions. In: UAI, pp. 300–307 (1991)Google Scholar
  16. 16.
    Robotics Operating System, ROS,
  17. 17.
    Stentz, A.: Optimal and efficient path planning for unknown and dynamic environments. Int. J. of Robotics and Automation 10(3), 89–100 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan Cacace
    • 1
  • Alberto Finzi
    • 1
  • Vincenzo Lippiello
    • 1
  • Giuseppe Loianno
    • 1
  • Dario Sanzone
    • 1
  1. 1.DIETIUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations