Advertisement

Hierarchic Superposition with Weak Abstraction

  • Peter Baumgartner
  • Uwe Waldmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)

Abstract

Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are “reasonably complete” even in the presence of free function symbols ranging into a background theory sort. The hierarchic superposition calculus of Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we demonstrate, not optimally. This paper aims to rectify the situation by introducing a novel form of clause abstraction, a core component in the hierarchic superposition calculus for transforming clauses into a form needed for internal operation. We argue for the benefits of the resulting calculus and provide a new completeness result for the fragment where all background-sorted terms are ground.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Handbook of Automated Reasoning. North Holland (2001)Google Scholar
  4. 4.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) – Model Evolution With Linear Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 85–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. Technical Report MPI-I-2013-RG1-002, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2013), http://www.mpi-inf.mpg.de/publications/index.html
  8. 8.
    Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning 47(2), 161–189 (2011)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Mathematics in Computer Science, 1–30 (2012)Google Scholar
  14. 14.
    de Moura, L.M., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 475–490. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, pp. 371–443. Elsevier and MIT Press (2001)Google Scholar
  17. 17.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Baumgartner
    • 1
    • 2
  • Uwe Waldmann
    • 3
  1. 1.NICTAAustralia
  2. 2.Australian National UniversityCanberraAustralia
  3. 3.MPI für InformatikSaarbrückenGermany

Personalised recommendations