E-MaLeS 1.1

  • Daniel Kühlwein
  • Stephan Schulz
  • Josef Urban
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)


Picking the right search strategy is important for the success of automatic theorem provers. E-MaLeS is a meta-system that uses machine learning and strategy scheduling to optimize the performance of the first-order theorem prover E. E-MaLeS applies a kernel-based learning method to predict the run-time of a strategy on a given problem and dynamically constructs a schedule of multiple promising strategies that are tried in sequence on the problem. This approach has significantly improved the performance of E 1.6, resulting in the second place of E-MaLeS 1.1 in the FOF divisions of CASC-J6 and CASC@Turing.


Strategy Schedule Theorem Prover Automate Reasoning Automatic Mode Automatic Theorem Prover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. CoRR abs/1108.3446 (2011); Accepted to JARGoogle Scholar
  2. 2.
    Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  3. 3.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 116–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 12–27. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Korovin, K.: iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description). Armando et al. [2], 292–298Google Scholar
  6. 6.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  8. 8.
    Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  9. 9.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Sörensson, N., Eén, N.: MiniSat 2.1 and MiniSat++ 1.0 SAT Race, Editions Technical Report, Chalmers University of Technology, Sweden (2008)Google Scholar
  11. 11.
    Stenz, G., Wolf, A.: E-SETHEO: An Automated3 Theorem Prover – System Abstract. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 436–440. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  13. 13.
    Tammet, T.: Gandalf. Journal of Automated Reasoning 18, 199–204 (1997)CrossRefGoogle Scholar
  14. 14.
    Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. J. Autom. Reasoning 37(1-2), 21–43 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidanc. In: Armando et al. [2], pp. 441–456Google Scholar
  16. 16.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Kühlwein
    • 1
  • Stephan Schulz
    • 2
  • Josef Urban
    • 1
  1. 1.Radboud University NijmegenNijmegenNetherlands
  2. 2.Technische Universität MünchenMünchenGermany

Personalised recommendations