Advertisement

Temporalizing Ontology-Based Data Access

  • Franz Baader
  • Stefan Borgwardt
  • Marcel Lippmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)

Abstract

Ontology-based data access (OBDA) generalizes query answering in databases towards deduction since (i) the fact base is not assumed to contain complete knowledge (i.e., there is no closed world assumption), and (ii) the interpretation of the predicates occurring in the queries is constrained by axioms of an ontology. OBDA has been investigated in detail for the case where the ontology is expressed by an appropriate Description Logic (DL) and the queries are conjunctive queries. Motivated by situation awareness applications, we investigate an extension of OBDA to the temporal case. As query language we consider an extension of the well-known propositional temporal logic LTL where conjunctive queries can occur in place of propositional variables, and as ontology language we use the prototypical expressive DL \(\mathcal{ALC}\). For the resulting instance of temporalized OBDA, we investigate both data complexity and combined complexity of the query entailment problem.

Keywords

Data Complexity Description Logic Situation Awareness Propositional Variable Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Baader, F., Bauer, A., Baumgartner, P., Cregan, A., Gabaldon, A., Ji, K., Lee, K., Rajaratnam, D., Schwitter, R.: A novel architecture for situation awareness systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 77–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Borgwardt, S., Lippmann, M.: On the complexity of temporal query answering. LTCS-Report 13-01, Technische Universität Dresden, Germany (2012), http://lat.inf.tu-dresden.de/research/reports.html
  4. 4.
    Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Log. 13(3) (2012)Google Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. KR 2006 (2006)Google Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. PODS 1998 (1998)Google Scholar
  8. 8.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. STOC 1977 (1977)Google Scholar
  9. 9.
    Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  10. 10.
    De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for Converse-PDL. Inform. Comput. 162(1-2) (2000)Google Scholar
  11. 11.
    Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access to distributed and semi-structured information. In: Proc. DS 1999 (1999)Google Scholar
  12. 12.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors 37(1) (1995)Google Scholar
  13. 13.
    Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Massacci, F.: Decision procedures for expressive description logics with intersection, composition, converse of roles and role identity. In: Proc. IJCAI 2001 (2001)Google Scholar
  15. 15.
    Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive query answering in expressive description logics. In: Proc. AAAI 2006 (2006)Google Scholar
  16. 16.
    Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977 (1977)Google Scholar
  17. 17.
    Poggi, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Sem. X (2008)Google Scholar
  18. 18.
    Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or: Why infinity is your friend! J. Artif. Intell. Res. 39(1) (2010)Google Scholar
  19. 19.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. IJCAI 1991 (1991)Google Scholar
  20. 20.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1) (1991)Google Scholar
  21. 21.
    Tessaris, S.: Questions and Answers: Reasoning and Querying in Description Logic. Ph.D. thesis, University of Manchester (2001)Google Scholar
  22. 22.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. Ph.D. thesis, RWTH Aachen (2001)Google Scholar
  23. 23.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inform. Comput. 155(1) (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Franz Baader
    • 1
  • Stefan Borgwardt
    • 1
  • Marcel Lippmann
    • 1
  1. 1.TU DresdenGermany

Personalised recommendations