Advertisement

dReal: An SMT Solver for Nonlinear Theories over the Reals

  • Sicun Gao
  • Soonho Kong
  • Edmund M. Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)

Abstract

We describe the open-source tool dReal, an SMT solver for nonlinear formulas over the reals. The tool can handle various nonlinear real functions such as polynomials, trigonometric functions, exponential functions, etc. dReal implements the framework of δ-complete decision procedures: It returns either unsat or δ -sat on input formulas, where δ is a numerical error bound specified by the user. dReal also produces certificates of correctness for both δ -sat (a solution) and unsat answers (a proof of unsatisfiability).

Keywords

Model Check Proof Tree Bound Model Check Positive Rational Number Proof Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.C.: Metitarski: An automatic prover for the elementary functions. In: AISC/MKM/Calculemus, pp. 217–231 (2008)Google Scholar
  2. 2.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories, Edinburgh, UK (2010)Google Scholar
  3. 3.
    Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 16. Elsevier (2006)Google Scholar
  4. 4.
    Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages, pp. 134–183 (1975)Google Scholar
  7. 7.
    Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)Google Scholar
  9. 9.
    Ganai, M.K., Ivančić, F.: Efficient decision procedure for non-linear arithmetic constraints using cordic. In: Formal Methods in Computer Aided Design (FMCAD) (2009)Google Scholar
  10. 10.
    Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. In: IJCAR, pp. 286–300 (2012)Google Scholar
  11. 11.
    Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)Google Scholar
  12. 12.
    Gao, S., Ganai, M., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic. In: FMCAD (2010)Google Scholar
  13. 13.
    Gao, S., Kong, S., Wang, M., Clarke, E.: Extracting proofs from a numerically-driven decision procedure, CMU SCS Technical Report CMU-CS-13-104 (2013)Google Scholar
  14. 14.
    Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hales, T.C.: Introduction to the flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs, Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 05021, Internationales Begegnungs- und Forschungszentrum für Informatik, IBFI (2005)Google Scholar
  16. 16.
    Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR, pp. 339–354 (2012)Google Scholar
  17. 17.
    Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. Journal of Automated Reasoning (2012) (accepted for publication)Google Scholar
  18. 18.
    Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: Calcs: Smt solving for non-linear convex constraints. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 71–79. IEEE (2010)Google Scholar
  19. 19.
    Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 122–137. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sicun Gao
    • 1
  • Soonho Kong
    • 1
  • Edmund M. Clarke
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations