Using Coalitional Games to Detect Communities in Social Networks

  • Lihua Zhou
  • Chao Cheng
  • Kevin Lü
  • Hongmei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7923)


The community detection in social networks is important to understand the structural and functional properties of networks. In this paper we propose a coalitional game model for community detection in social networks, and use the Shapley Value in coalitional games to evaluate each individual’s contribution to the closeness of connection. We then develop an iterative formula for computing the Shapley Value to improve the computation efficiency. We further propose a hierarchical clustering algorithm GAMEHC to detect communities in social networks. The effectiveness of our methods is verified by preliminary experimental result.


social networks community detection game theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, Y.Y., et al.: Link communities reveal multi-scale complexity in networks. Nature 466, 761–764 (2010)CrossRefGoogle Scholar
  2. 2.
    Fatima, S.S., et al.: A linear approximation method for the Shapley Value. Artificial Intelligence 172, 1673–1699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aadithya, K.V., Ravindran, B., Michalak, T.P., Jennings, N.R.: Efficient Computation of the Shapley Value for Centrality in Networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 1–13. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Lemke, C., Howson, J.: Equilibrium points of bimatrix games. Journal of the Society of Industrial and Applied Mathematics, 413–424 (1964)Google Scholar
  6. 6.
    Lin, Y.R., et al.: Community Discovery via Metagraph Factorization. ACM Transactions on Knowledge Discovery from Data 5(3), 17 (2011)CrossRefGoogle Scholar
  7. 7.
    Liu, W.Y., et al.: An approach for multi-objective categorization based on the game theory and Markov process. Applied Soft Computing 11, 4087–4096 (2011)CrossRefGoogle Scholar
  8. 8.
    Liu, W.Y., et al.: Intelligent Data Analysis. Science Press, Beijing (2007)Google Scholar
  9. 9.
    Moretti, S., et al.: Using coalitional games on biological networks to measure centrality and power of genes. Bioinformatics 26(21), 2721–2730 (2010)CrossRefGoogle Scholar
  10. 10.
    Owen, G.: Multilinear extensions of games. Management Science 18(5), 64–79 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Saad, W., et al.: Coalitional game theory for communication networks: a tutorial. IEEE Signal Processing Magazine 26(5), 77–97 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shapley, L.S.: A Value for N-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to be Theory of Games, pp. 307–317. Princeton University Press (1953)Google Scholar
  13. 13.
    Shi, C., et al.: Multi-objective community detection in complex networks. Applied Soft Computing 12, 850–859 (2012)CrossRefGoogle Scholar
  14. 14.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4), 452–473 (1977)Google Scholar
  15. 15.
    Zhao, Z.Y., et al.: Topic oriented community detection through social objects and link analysis in social networks. Knowledge-Based Systems 26, 164–173 (2012)CrossRefGoogle Scholar
  16. 16.
    Zlotkin, G., Rosenschein, J.: Coalition cryptography and stability mechanisms for coalition formation in task oriented domains. In: Association for the Advancement of Artificial Intelligence, pp. 432–437 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lihua Zhou
    • 1
  • Chao Cheng
    • 1
  • Kevin Lü
    • 2
  • Hongmei Chen
    • 1
  1. 1.Department of Computer Science and EngineeringYunnan UniversityKunmingChina
  2. 2.Brunel UniversityUxbridgeUK

Personalised recommendations