Mobile Context-Based Framework for Monitoring Threats in Urban Environment

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 368)


With a rapid evolution of mobile devices, the idea of context awareness has gained a remarkable popularity in recent years. Modern smartphones and tablets are equipped with a variety of sensors including accelerometers, gyroscopes, pressure gauges, light and GPS sensors. Additionally, the devices become computationally powerful which allows real-time processing of data gathered by their sensors. Universal access to the Internet via WiFi hot-spots and GSM network makes mobile devices perfect platforms for ubiquitous computing. Although there exist numerous frameworks for context-aware systems, they are usually dedicated to static, centralized, client-server architectures. There is still space for research in a field of context modeling and reasoning for mobile devices. In this paper, we propose a lightweight context-aware framework for mobile devices that uses data gathered by mobile device sensors and perform on-line reasoning about possible threats, based on the information provided by the Social Threat Monitor system developed in the INDECT project.


context-awareness mobile computing GIS knowledge management INDECT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, W.T., Bobek, S., Nalepa, G.J., Kaczor, K., Kluza, K.: How to reason by HeaRT in a semantic knowledge-based wiki. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2011. pp. 438–441. Boca Raton, Florida, USA (November 2011)Google Scholar
  2. 2.
    Adrian, W.T., Ciężkowski, P., Kaczor, K., Ligęza, A., Nalepa, G.J.: Web-based knowledge acquisition and management system supporting collaboration for improving safety in urban environment. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 1–12. Springer, Heidelberg (2012), CrossRefGoogle Scholar
  3. 3.
    Adrian, W.T., Waliszko, J., Ligęza, A., Nalepa, G.J., Kaczor, K.: Description logic reasoning in an ontology-based system for citizen safety in urban environment. In: Mercier-Laurent, E., et al. (eds.) AI4KM 2012: 1st International Workshop on Artificial Intelligence for Knowledge Management at the Biennial European Conference on Artificial Intelligence (ECAI 2012), Montpellier, France, August 28, pp. 63–67 (2012)Google Scholar
  4. 4.
    Bobek, S.: Heart rule inference engine in intelligent systems. PAR Pomiary Automatyka Robotyka 15(12), 226–228 (2011) ISSN 1427-9126Google Scholar
  5. 5.
    Bui, H.H., Venkatesh, S., West, G.A.W.: Tracking and surveillance in wide-area spatial environments using the abstract hidden markov model. IJPRAI 15(1), 177–195 (2001), ijprai15.html#BuiVW01 Google Scholar
  6. 6.
    Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: PerCom, pp. 277–286. IEEE Computer Society (2004)Google Scholar
  7. 7.
    Chen, H., Perich, F., Finin, T.W., Joshi, A.: Soupa: Standard ontology for ubiquitous and pervasive applications. In: 1st Annual International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services, Cambridge, MA, USA, August 22-25, pp. 258–267. IEEE Computer Society (2004)Google Scholar
  8. 8.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  9. 9.
    Dey, A.K.: Modeling and intelligibility in ambient environments. J. Ambient Intell. Smart Environ. 1(1), 57–62 (2009)Google Scholar
  10. 10.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Atlanta, GA, USA (2000), aAI9994400Google Scholar
  11. 11.
    Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-aware mobile services. In: Proceedings of IEEE Vehicular Technology Conference (VTC) (2004)Google Scholar
  12. 12.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  13. 13.
    Hu, D.H., Dong, F., li Wang, C.: A semantic context management framework on mobile device âĹŮGoogle Scholar
  14. 14.
    Jaroucheh, Z., Liu, X., Smith, S.: Recognize contextual situation in pervasive environments using process mining techniques. J. Ambient Intelligence and Humanized Computing 2(1), 53–69 (2011)CrossRefGoogle Scholar
  15. 15.
    Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Proposal of representing BPMN diagrams with XTT2-based business rules. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 243–248. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  16. 16.
    Ligęza, A., Adrian, W.T., Ciężkowski, P.: Towards collaborative knowledge engineering for improving local safety in urban environment. In: Canadas, J., Nalepa, G.J., Baumeister, J. (eds.) 8th Workshop on Knowledge Engineering and Software Engineering (KESE 2012) at the at the biennial European Conference on Artificial Intelligence (ECAI 2012), Montpellier, France, August 28, pp. 58–61 (2012),
  17. 17.
    Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(2), 117–137 (2011)CrossRefGoogle Scholar
  18. 18.
    Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  19. 19.
    Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233 (2004), CrossRefGoogle Scholar
  20. 20.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA - rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  22. 22.
    Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 598–605. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-based business rules. International Journal of Software Engineering and Knowledge Engineering (IJSEKE) 22(4), 485–524 (2012),
  24. 24.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. International Journal on Artificial Intelligence Tools 20(6), 1107–1125 (2011)CrossRefGoogle Scholar
  25. 25.
    Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first order logic. Personal Ubiquitous Comput. 7(6), 353–364 (2003), CrossRefGoogle Scholar
  26. 26.
    Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a pervasive computing environment. Knowl. Eng. Rev. 18(3), 209–220 (2003)CrossRefGoogle Scholar
  27. 27.
    Szpyrka, M.: Design and analysis of rule-based systems with adder designer. In: Cotta, C., Reich, S., Schaefer, R., Ligęza, A. (eds.) Knowledge-Driven Computing: knowledge engineering and intelligent computations. SCI, vol. 102, pp. 255–271. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Szpyrka, M., Szmuc, T.: Decision tables in petri net models. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 648–657. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Waliszko, J., Adrian, W.T., Ligęza, A.: Traffic danger ontology for citizen safety web system. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 165–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Wang, X., Zhang, D., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: PerCom Workshops, pp. 18–22 (2004)Google Scholar
  31. 31.
    Ye, J., Coyle, L., Dobson, S.A., Nixon, P.: Representing and manipulating situation hierarchies using situation lattices. Revue d Intelligence Artificielle 22(5), 647–667 (2008)CrossRefGoogle Scholar
  32. 32.
    Ye, J., Dobson, S.: Exploring semantics in activity recognition using context lattices. J. Ambient Intell. Smart Environ. 2(4), 389–407 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations