Advertisement

Emerging Perspectives in Stroke Rehabilitation

  • Guillermo Asín Prieto
  • Roberto Cano-de-la-Cuerda
  • Eduardo López-Larraz
  • Julien Metrot
  • Marco Molinari
  • Liesjet E. H. van Dokkum
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 4)

Abstract

Poststroke characteristics vary significantly between patients and over time, necessitating the introduction of individualized therapy. To provide the appropriate therapy to a patient at the correct time, several theoretical considerations must be taken into account—from a clear delineation of rehabilitation goals to an understanding of how a certain therapy can influence the underlying neuroplasticity. With regard to the differences between upper and lower limb motor recovery, both domains have experienced a change in perspective on rehabilitation. In gait training, assist-as-needed rehabilitation paradigms have become more pertinent, allowing each patient to find his/her individual walking rhythm and style within healthy boundaries. With the introduction of robotics in upper limb training (with or without virtual reality games that are attached), the amount of training and feedback that is provided to a patient can be increased without a rise in cost. The emerging consensus is to consider the various motor therapies and pharmacological interventions as part of a single, large toolbox instead of separate entities, guiding us toward a more patient-therapist-tailored approach, which is demonstrating tremendous efficacy.

Keywords

Motor recovery Patient-centered Stroke rehabilitation Technology-based interventions 

References

  1. Abdullah H, Tarry C, Datta R, Mittal G, Abderrahim M (2007) Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy. J Rehabil Res Dev 44(1):43–62CrossRefGoogle Scholar
  2. Alstermark B, Isa T (2012) Circuits for skilled reaching and grasping. Annu Rev Neurosci 35:559–578. doi: 10.1146/annurev-neuro-062111-150527 CrossRefGoogle Scholar
  3. Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19(12):2848–2864CrossRefGoogle Scholar
  4. Backus D, Winchester P, Tefertiller C (2010) Translating research into clinical practice: integrating robotics into neurorehabilitation for stroke survivors. Topics Stroke Rehabil 17(5):362–370CrossRefGoogle Scholar
  5. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRefGoogle Scholar
  6. Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno J, Pons J, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 8(1):66Google Scholar
  7. Berkowitz A (2008) Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J Neurophysiol 99(6):2887–2901CrossRefGoogle Scholar
  8. Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31CrossRefGoogle Scholar
  9. Bobath B, Bobath K (1957) Control of motor function in the treatment of cerebral palsy. Physiotherapy 43:295–303Google Scholar
  10. Boddice G, Brauer S, Gustafsson L, Kenardy J, Hoffmann T (2010) Clinical Guidelines for Stroke Management. Melbourne, Australia: National Stroke Foundation. (Published 2012)Google Scholar
  11. Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A et al (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917CrossRefGoogle Scholar
  12. Burdea G, Coiffet P (2003) Virtual reality technology. Presence 12(6):663–664Google Scholar
  13. Carpaneto J, Raos V, Umiltà MA, Fogassi L, Murata A, Gallese V, Micera S, Zhang W, Johnston JA, Ross MA et al (2012) Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. J NeuroEng Rehabil 9(1):84Google Scholar
  14. Cauraugh JH, Summers JJ et al (2005) Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol 75(5):309–320CrossRefGoogle Scholar
  15. Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, Seetharaman K, Hoellinger T, Dan B, Dutoit T et al (2012) From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural plast Google Scholar
  16. Collantes I, Asín G, Moreno JC, Pons JL (2012) Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation. In: Proceedings of EMBC’12, pp 4855–4858Google Scholar
  17. Collantes I, Asín G, Moreno JC, Pons JL (2012) Analysis of the effect of two different feedbacks on the biomechanical patterns of stroke patients during robotic-assisted gait rehabilitation. In: ICNR’12 (accepted)Google Scholar
  18. Costa N, Caldwell G (2006) Control of a biomimetic “soft-actuated” 10dof lower body exoskeleton. In: Proceedings of BioRob’06, pp 495–501Google Scholar
  19. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609. doi: 10.1093/brain/awr039 CrossRefGoogle Scholar
  20. d’Avella A, Portone A, Lacquaniti F (2011) Superposition and modulation of muscle synergies for reaching in response to a change in target location. J Neurophysiol 106(6):2796–2812CrossRefGoogle Scholar
  21. Daly J, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M (2009) Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33(4):203CrossRefGoogle Scholar
  22. de NAP Shelton F, Reding MJ (2001) Effect of lesion location on upper limb motor recovery after stroke. Stroke 32(1):107–112Google Scholar
  23. Deutsch JE (2011) Using virtual reality to improve walking poststroke: translation to individuals with diabetes. J Diabetes Sci Technol 5(2):309–314Google Scholar
  24. Deutsch JE, Paserchia C, Vecchione C, Mirelman A, Lewis JA, Boian R, Burdea G (2004) Improved gait and elevation speed of individuals post-stroke after lower extremity training in virtual environments. J Neurol Phys Ther 28(4):185–186Google Scholar
  25. Dickstein R (2008) Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair 22(6):649–660CrossRefGoogle Scholar
  26. Dimyan MA, Cohen LG (2010) Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabil Neural Repair 24(2):125–135. doi: 10.1177/1545968309345270 CrossRefGoogle Scholar
  27. Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3(9):528–536CrossRefGoogle Scholar
  28. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J (1992) Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23(8):1084–1089CrossRefGoogle Scholar
  29. Fluet G, Merians A, Qiu Q, Lafond I, Saleh S, Ruano V, Delmonico A, Adamovich S (2012) Robots integrated with virtual reality simulations for customized motor training in a person with upper extremity hemiparesis: a case study. J Neurol Phys Ther 36(2):79–86CrossRefGoogle Scholar
  30. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D (2008) Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 22(7–8):625–632Google Scholar
  31. Gizzi L, Nielsen JF, Felici F, Moreno JC, Pons JL, Farina D (2012) Motor modules in robot-aided walking. J NeuroEng Rehabil 9(1):76CrossRefGoogle Scholar
  32. Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146(2):269–277CrossRefGoogle Scholar
  33. Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FEN et al (2005) Microcircuits in action–from CPGs to neocortex. Trends Neurosci 28(10):525–533CrossRefGoogle Scholar
  34. Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E (1987) Arm function after stroke: measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry 50(6):714–719CrossRefGoogle Scholar
  35. Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics Stroke Rehabil 14(2):52–61CrossRefGoogle Scholar
  36. Hesse S, Werner C (2009) Connecting research to the needs of patients and clinicians. Brain Res Bull 78(1):26–34CrossRefGoogle Scholar
  37. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13Google Scholar
  38. Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 6(1):5CrossRefGoogle Scholar
  39. Ifejika-Jones NL, Barrett AM (2011) Rehabilitation emerging technologies, innovative therapies, and future objectives. Neurotherapeutics 8(3):452–462CrossRefGoogle Scholar
  40. Institute of Medicine (US), Committee on Quality of Health Care in America. (2001) Crossing the quality chasm: a new health system for the 21st century. National Academies PressGoogle Scholar
  41. Iosa M, Cincotti F, Pisotta I, Tamburella F, Mattia D, Molinari M (2011) What users need. Requirements in BNCI-driven robot for gait rehabilitation after stroke: a pilot study. Int J Bioelectromagnetism 13:13–15Google Scholar
  42. Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation: technology at the neural. Interface 6(2):108–115Google Scholar
  43. Krebs HI, Hogan N (2006) Therapeutic robotics: a technology push. Proc IEEE 94(9):1727–1738CrossRefGoogle Scholar
  44. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87CrossRefGoogle Scholar
  45. Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: Proceedings of ICRA ‘09, pp 2556–2562Google Scholar
  46. Kwakkel G, Kollen B, Twisk J (2006) Impact of time on improvement of outcome after stroke. Stroke 37(9):2348–2353CrossRefGoogle Scholar
  47. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121Google Scholar
  48. Lange B, Flynn S, Proffitt R, Chang C, Rizzo AA (2010) Development of an interactive game-based rehabilitationtool for dynamic balance training. Topics in StrokeRehabil 17(5):345–352CrossRefGoogle Scholar
  49. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1783CrossRefGoogle Scholar
  50. Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. In: Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, vol 2, pp 4888–4891Google Scholar
  51. Mattia D, Pichiorri F, Molinari M, Rupp R (2012) Brain computer interface for hand motor function restoration and rehabilitation. Towards Practical Brain-Computer Interfaces, pp 131–153Google Scholar
  52. Meadmore KL, Hughes AM, Freeman CT, Cai Z, Tong D, Burridge JH, Rogers E (2012) Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J NeuroEng Rehabil 9:32CrossRefGoogle Scholar
  53. Mehrholz J, Werner C, Kugler J, Pohl M (2007) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 4(4)Google Scholar
  54. Metrot J, Mottet D, Hauret I, Bonnin HY, VanDokkum L, Torre K, Laffont I (2013) Changes in bimanual coordination during the first 6 weeks after moderate hemiparetic stroke. Neurorehabil Neural Repair 27:251–259Google Scholar
  55. Moreno JC, Brunetti F, Rocon E, Pons JL (2008) Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness. Med Biol Eng Comput 46(1):43–53CrossRefGoogle Scholar
  56. Morone G, Bragoni M, Iosa M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucci S (2011) Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair 25(7):636–644CrossRefGoogle Scholar
  57. Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S (2012) Who may have durable benefit from robotic gait training? A 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke 43(4):1140–1142CrossRefGoogle Scholar
  58. Nilsen DM, Gillen G, Gordon AM (2010) Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am J Occup Ther 64(5):695–708CrossRefGoogle Scholar
  59. Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, Colgate EJ, Schwandt D (2008) KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil 15(2):131–139CrossRefGoogle Scholar
  60. Pei, Y., Kim, Y., Obinata, G., Hase, K., and Stefanov, D. (2011). Trajectory planning of a robot for lower limb rehabilitation. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pages 1259–1263. IEEEGoogle Scholar
  61. Perfetti C (2001) L’exercice thérapeutique cognitif pour la rééducation du patient hémiplégique Elsevier MassonGoogle Scholar
  62. Peurala S, Airaksinen O, Huuskonen P, Jakala P, Juhakoski M, Sandell K, Tarkka I, Sivenius J (2009) Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med 41(3):166–173CrossRefGoogle Scholar
  63. Pichiorri F, Fallani FDV, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kubler A, Mattia D (2011a) Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness. J Neural Eng 8(2):025020CrossRefGoogle Scholar
  64. Pichiorri F, Cincotti F, de Vico Fallani F, Pisotta I, Morone G, Molinari M, Mattia D (2011b) Towards a brain computer Interface-based rehabilitation: from bench to bedside. In Proceedings of the 5th international brain–computer interface conference, Verlag der Technischen Universitat Graz, Graz, Austria, pp 268–271Google Scholar
  65. Pichiorri F, Morone G, Cincotti F et al (2012) Clinical trial design to validate a BCI-supported task-specific training in neurorehabilitation after stroke. Eur J Neurol 19:566Google Scholar
  66. Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P (2006) Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev 2Google Scholar
  67. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW (2008) Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 22(1):64–71Google Scholar
  68. Rand D, Kizony R, Weiss P (2008) The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J Neurol Physl Ther 32(4):155–163CrossRefGoogle Scholar
  69. Rogers L, Madhavan S, Roth H, Stinear J (2011) Transforming neurorehabilitation of walking following stroke: the promise of non-invasive brain stimulation–a review. Restor Neurol Neurosci 29(6):507–516Google Scholar
  70. Rose FD, Brooks BM, Rizzo AA (2005) Virtual reality in brain damage rehabilitation: review. Cyber Psychol Behav 8(3):241–262. doi: 10.1089/cpb.2005.8.241 CrossRefGoogle Scholar
  71. Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: Proceedings of ICORR’05, pp 394–399Google Scholar
  72. Sartori L, Camperio Ciani A, Bulgheroni M, Castiello U (2012) Reaching and grasping behavior in Macaca fascicularis: a kinematic study. Exp Brain Res 1–6Google Scholar
  73. Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J NeuroengRehabil 6:23Google Scholar
  74. Schmidt H, Hesse S, Werner C, Bardeleben A (2004) Upper and lower extremity robotic devices to promote motor recovery after stroke-recent developments. In: Engineering in medicine and biology society, 2004. IEMBS’04. 26th annual international conference of the IEEE, vol 2, pp 4825–4828 (IEEE)Google Scholar
  75. Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ (2009) A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) trial. Phys Ther 89(12):1327–1336CrossRefGoogle Scholar
  76. Scott CL, Phillips LH, Johnston M, Whyte MM, MacLeod MJ (2012) Emotion processing and social participation following stroke: study protocol. BMC Neurol 12(1):56CrossRefGoogle Scholar
  77. Sharma N, Cohen LG (2012) Recovery of motor function after stroke. Dev PsychobiolGoogle Scholar
  78. Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, M′etrailler P, Brodard R, Reynard F (2009) The WalkTrainer-a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Syst Rehabil Eng 17(1):38–45CrossRefGoogle Scholar
  79. Stern PH, McDowell F, Miller JM, Robinson M (1970) Effects of facilitation exercise techniques in stroke rehabilitation. Arch Phys Med Rehabil 51:526–531Google Scholar
  80. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(1):170–180CrossRefGoogle Scholar
  81. Sunderland A, Tinson D, Bradley L, Hewer RL (1989) Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry 52(11):1267–1272CrossRefGoogle Scholar
  82. Taub E, Morris DM (2001) Constraint-induced movement therapy to enhance recovery after stroke. Curr Atheroscler Rep 3(4):279–286CrossRefGoogle Scholar
  83. Taub E, Crago JE, Uswatte G (1998) Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation. Rehabil Psychol 43(2):152CrossRefGoogle Scholar
  84. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A (2006) A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37(4):1045–1049CrossRefGoogle Scholar
  85. Umberger BR, Rubenson J (2011) Understanding muscle energetics in locomotion: new modeling and experimental approaches. Exerc Sport Sci Rev 39(2):59CrossRefGoogle Scholar
  86. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRefGoogle Scholar
  87. Weiss P, Kizony R, Feintuch U, Katz N (2006) Virtual reality in neurorehabilitation. In: Selzer M, Cohen L, Clarke S, Duncan P, Gage F (eds) Textbook of neural repair and rehabilitation. Cambridge University Press, Cambridge, pp 182–197Google Scholar
  88. Wheeler JW, Krebs HI, Hogan N (2004) An ankle robot for a modular gait rehabilitation system. In: Proceedings of IROS’04, vol 2, pp 1680–1684Google Scholar
  89. Wirz M, Zemon D, Rupp R, Scheel A, Colombo G, Dietz V, Hornby T et al (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86(4):672–680CrossRefGoogle Scholar
  90. Wu C, Chuang L, Lin K, Chen H, Tsay P (2011) Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabil Neural Repair 25(2):130–139CrossRefGoogle Scholar
  91. Ziegler MD, Zhong H, Roy RR, Edgerton VR (2010) Why variability facilitates spinal learning. J Neurosci 30(32):10720–10726CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guillermo Asín Prieto
    • 1
  • Roberto Cano-de-la-Cuerda
    • 2
  • Eduardo López-Larraz
    • 3
  • Julien Metrot
    • 4
  • Marco Molinari
    • 5
  • Liesjet E. H. van Dokkum
    • 4
  1. 1.Bioengineering GroupSpanish National Research Council (CSIC)MadridSpain
  2. 2.Department of Physical Therapy, Occupational Therapy, Department Physical Medicine and Rehabilitation Rey Juan Carlos UniversityMadridSpain
  3. 3.Dpto. Informática e Ingeniería de Sistemas, EINAUniversity of ZaragozaZaragozaSpain
  4. 4.Movement to Health (M2H) laboratory, EuroMovUniversity Montpellier-1MontpellierFrance
  5. 5.Neurological and Spinal Cord Rehabilitation Unit AIRCCS Fondazione Santa LuciaRomaItaly

Personalised recommendations