Advertisement

Homomorphic Encryption with Access Policies: Characterization and New Constructions

  • Michael Clear
  • Arthur Hughes
  • Hitesh Tewari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7918)

Abstract

A characterization of predicate encryption (PE) with support for homomorphic operations is presented and we describe the homomorphic properties of some existing PE constructions. Even for the special case of IBE, there are few known group-homomorphic cryptosystems. Our main construction is an XOR-homomorphic IBE scheme based on the quadratic residuosity problem (variant of the Cocks’ scheme), which we show to be strongly homomorphic. We were unable to construct an anonymous variant that preserves this homomorphic property, but we achieved anonymity for a weaker notion of homomorphic encryption, which we call non-universal. A related security notion for this weaker primitive is formalized. Finally, some potential applications and open problems are considered.

Keywords

Access Policy Homomorphic Encryption Random Oracle Model Message Space Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Symposium on Theory of Computing, STOC 2009, p. 169 (2009)Google Scholar
  2. 2.
    Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011), http://eprint.iacr.org/
  6. 6.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp. 365–377. ACM, New York (1982)CrossRefGoogle Scholar
  7. 7.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms 31, 469–472 (1985)Google Scholar
  9. 9.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1219–1234. ACM, New York (2012)CrossRefGoogle Scholar
  13. 13.
    Naccache, D.: Is theoretical cryptography any good in practice? Talk given at CHES 2010 and Crypto 2010 (2010)Google Scholar
  14. 14.
    Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344 Version: 20110627:080002 (2011), http://eprint.iacr.org/
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)Google Scholar
  16. 16.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120–128 (1994)Google Scholar
  19. 19.
    Galbraith, S.D.: Elliptic Curve Paillier Schemes. J. Cryptology 15, 129–138 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Gjøsteen, K.: Homomorphic cryptosystems based on subgroup membership problems. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 314–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: characterizations, impossibility results, and applications. Designs, Codes and Cryptography, 1–24 (2012)Google Scholar
  23. 23.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Hayashi, R., Tanaka, K.: Universally Anonymizable Public-Key Encryption. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Ateniese, G., Gasti, P.: Universally anonymous IBE based on the quadratic residuosity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 667–678. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657. IEEE Computer Society (2007)Google Scholar
  29. 29.
    Goldwasser, S.: Lecture: Introduction to homomorophic encryption (2011), http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-shafi-1.pdf (last Checked on March 31, 2013)
  30. 30.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468 (2012), http://eprint.iacr.org/
  31. 31.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition. Cryptology ePrint Archive, Report 2012/515 (2012), http://eprint.iacr.org/
  32. 32.
    Wei, R., Ye, D.: Delegate predicate encryption and its application to anonymous authentication. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS 2009, pp. 372–375. ACM, New York (2009)Google Scholar
  33. 33.
    Rothblum, R.: Homomorphic Encryption: From Private-Key to Public-Key. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Alzaid, H., Foo, E., Nieto, J.G.: Secure data aggregation in wireless sensor network: a survey. In: Proceedings of the Sixth Australasian Conference on Information Security, AISC 2008, vol. 81, pp. 93–105. Australian Computer Society, Inc., Darlinghurst (2008)Google Scholar
  36. 36.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  38. 38.
    Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: Characterizations, impossibility results, and applications. Cryptology ePrint Archive, Report 2010/501 (2010), http://eprint.iacr.org/
  39. 39.
    Peng, K., Boyd, C., Dawson, E.: A Multiplicative Homomorphic Sealed-Bid Auction Based on Goldwasser-Micali Encryption. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 374–388. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.: An application of the goldwasser-micali cryptosystem to biometric authentication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 96–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Clear
    • 1
  • Arthur Hughes
    • 1
  • Hitesh Tewari
    • 1
  1. 1.School of Computer Science and StatisticsTrinity College DublinIreland

Personalised recommendations