Advertisement

An Improved Knapsack Solver for Column Generation

  • Klaus Jansen
  • Stefan Kraft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7913)

Abstract

The Knapsack Problem (KP) and its variants are well-known NP-hard problems. Their study is also driven by approximation algorithms for optimization problems like Bin Packing: these algorithms must often solve KP instances as subproblems. In this paper, we introduce the Knapsack Problem with Inversely Proportional Profits (KPIP), a generalization of KP: in it, one of several knapsack sizes has to be chosen. At the same time, the item profits are inversely proportional to the chosen knapsack size so that it is non-trivial to take the right knapsack. We adapt Lawler’s approximation scheme for KP to faster solve KPIP. Thus, we are able to improve the running time of an approximation scheme for Variable-Sized Bin Packing that solves KPIP as a subproblem.

Keywords

Knapsack Problem Unbounded Knapsack Problem Bounded Knapsack Problem Variable-Sized Bin Packing Column Generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)Google Scholar
  2. 2.
    Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  3. 3.
    Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock problem. Operations Research 9(6), 849–859 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock problem—Part II. Operations Research 11(6), 863–888 (1963)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. Journal of the ACM 22, 463–468 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized bin packing. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 529–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized bin packing. Tech. Rep. 1301, Christian-Albrechts-Universität zu Kiel (2013) ISSN 2192-6247Google Scholar
  8. 8.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), November 3-5, pp. 312–320. IEEE Computer Society, Chicago (1982)CrossRefGoogle Scholar
  9. 9.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lawler, E.L.: Fast approximation algorithms for knapsack problems. Mathematics of Operations Research 4(4), 339–356 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Magazine, M.J., Oguz, O.: A fully polynomial approximation algorithm for the 0-1 knapsack problem. European Journal of Operational Research 8(3), 270–273 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Murgolo, F.D.: An efficient approximation scheme for variable-sized bin packing. SIAM Journal on Computing 16(1), 149–161 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research 20(2), 257–301 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM 22, 115–124 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shachnai, H., Yehezkely, O.: Fast asymptotic FPTAS for packing fragmentable items with costs. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 482–493. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Klaus Jansen
    • 1
  • Stefan Kraft
    • 1
  1. 1.Department of Computer Science, Theory of ParallelismChristian-Albrechts-University to KielKielGermany

Personalised recommendations