Advertisement

Malleable Signatures for Resource Constrained Platforms

  • Henrich C. Pöhls
  • Stefan Peters
  • Kai Samelin
  • Joachim Posegga
  • Hermann de Meer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7886)

Abstract

Malleable signatures allow the signer to control alterations to a signed document. The signer limits alterations to certain parties and to certain parts defined during signature generation. Admissible alterations do not invalidate the signature and do not involve the signer. These properties make them a versatile tool for several application domains, like e-business and health care. We implemented one secure redactable and three secure sanitizable signature schemes on secure, but computationally bounded, smart card. This allows for a secure and practically usable key management and meets legal standards of EU legislation. To gain speed we securely divided the computing tasks between the powerful host and the card; and we devise a new accumulator to yield a useable redactable scheme. The performance analysis of the four schemes shows only a small performance hit by the use of an off-the-shelf card.

Keywords

Smart Card Signature Scheme Trusted Third Party Proxy Signature Modular Exponentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI, vol. 155, pp. 117–128. GI (2009)Google Scholar
  7. 7.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for sanitizable signatures. In: Proc. of EuroPKI 2012. LNCS. Springer (2012)Google Scholar
  9. 9.
    Canard, S., Girault, M.: Implementing group signature schemes with smart cards. In: Proc. of CARDIS (2002)Google Scholar
  10. 10.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s Guide. Addison-Wesley (2000)Google Scholar
  12. 12.
    EC: Directive 1999/93/EC from 13 December 1999 on a Community framework for electronic signatures. Official Journal of the EC L 12, 12–20 (2000)Google Scholar
  13. 13.
    Giesecke & Devrient GmbH. SmartC@fé® Expert 4.0 V.05.2008 (2008)Google Scholar
  14. 14.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proc. of ACM CCS, CCS 1996, pp. 48–57. ACM (1996)Google Scholar
  19. 19.
    Meister, G., Vogel, M.: Protection profiles and generic security targets for smart cards as secure signature creation devices - existing solutions for the payment sector. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 179–187. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.: Digital documents sanitizing problem. Technical Report ISEC2003-20, IEICE (2003)Google Scholar
  21. 21.
    Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards. In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Pöhls, H.C., Höhne, F.: The role of data integrity in EU digital signature legislation — achieving statutory trust for sanitizable signature schemes. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 175–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature — Performance, Mixing Properties, and Revisiting the Property of Transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Pöhls, H.C., Samelin, K., Posegga, J., de Meer, H.: Transparent mergeable redactable signatures with signer commitment and applications. Technical Report MIP-1206, University of Passau (August 2012)Google Scholar
  25. 25.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Tan, K.W., Deng, R.H.: Applying sanitizable signature to web-service-enabled business processes: Going beyond integrity protection. In: Proc. of ICWS 2009, pp. 67–74 (2009)Google Scholar
  29. 29.
    Tews, H., Jacobs, B.: Performance issues of selective disclosure and blinded issuing protocols on java card. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell, C.J., Quisquater, J.-J. (eds.) WISTP 2009. LNCS, vol. 5746, pp. 95–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Henrich C. Pöhls
    • 1
    • 3
  • Stefan Peters
    • 3
  • Kai Samelin
    • 2
    • 3
  • Joachim Posegga
    • 1
    • 3
  • Hermann de Meer
    • 2
    • 3
  1. 1.Chair of IT-SecurityUniversity of PassauGermany
  2. 2.Chair of Computer Networks and Computer CommunicationUniversity of PassauGermany
  3. 3.Institute of IT-Security and Security Law (ISL)University of PassauGermany

Personalised recommendations