Advertisement

Transit Node Routing Reconsidered

  • Julian Arz
  • Dennis Luxen
  • Peter Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on contraction hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a contraction hierarchy (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path problem.

Keywords

Short Path Search Space Road Network Query Time Route Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science 46(3), 388–404 (2012)CrossRefGoogle Scholar
  3. 3.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bast, H., Funke, S., Matijevic, D.: TRANSIT - Ultrafast Shortest-Path Queries with Linear-Time Preprocessing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) 9th DIMACS Implementation Challenge – Shortest Paths (2006)Google Scholar
  5. 5.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, ALENEX 2007, pp. 46–59. SIAM (2007)Google Scholar
  6. 6.
    Geisberger, R.: Contraction Hierarchies. Master’s thesis, Universität Karlsruhe (2008), http://algo2.iti.kit.edu/1094.php
  7. 7.
    Schultes, D.: Route Planning in Road Networks. PhD thesis, Universität Karlsruhe (February 2008), http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
  8. 8.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Sanders, P., Schultes, D.: Engineering Highway Hierarchies. ACM Journal of Experimental Algorithmics 17(1), 1–40 (2012)MathSciNetGoogle Scholar
  10. 10.
    Bast, H.: Lecture slides: Efficient route planning, http://ad-wiki.informatik.uni-freiburg.de/teaching/EfficientRoutePlanningSS2012
  11. 11.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Delling, D., Goldberg, A.V., Werneck, R.F.: Faster Batched Shortest Paths in Road Networks. In: 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. OpenAccess Series in Informatics (OASIcs), vol. 20, pp. 52–63 (2011)Google Scholar
  13. 13.
    Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s thesis, Karlsruhe Institute of Technology (2010)Google Scholar
  14. 14.
    Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In: 9th Workshop on Algorithm Engineering and Experiments, pp. 36–45. SIAM (2007)Google Scholar
  15. 15.
    Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters 27(3), 125–128 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vetter, C.: Parallel Time-Dependent Contraction Hierarchies. Studienarbeit, Karlsruhe Institute of Technology (2009), http://algo2.iti.kit.edu/download/vetter_sa.pdf
  17. 17.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74. American Mathematical Society (2009)Google Scholar
  18. 18.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics 15(2.3), 1–31 (2010), Special Section devoted to In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Delling, D., Goldberg, A.V., Werneck, R.F.: Hub Label Compression. In: Bonifaci, V. (ed.) SEA 2013. LNCS, vol. 7933, pp. 17–28. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Eisner, J., Funke, S.: Transit Nodes – Lower Bounds and Refined Construction. In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments, ALENEX 2012, pp. 141–149. SIAM (2012)Google Scholar
  22. 22.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-Accelerated Shortest Path Trees. In: 25th International Parallel and Distributed Processing Symposium, IPDPS 2011 (2011)Google Scholar
  23. 23.
    Arz, J., Luxen, D., Sanders, P.: Transit Node Routing Reconsidered. Technical report, Karlsruhe Institute of Technology (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julian Arz
    • 1
  • Dennis Luxen
    • 1
  • Peter Sanders
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations