Intriguingly Simple and Fast Transit Routing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


This paper studies the problem of computing optimal journeys in dynamic public transit networks. We introduce a novel algorithmic framework, called Connection Scan Algorithm (CSA), to compute journeys. It organizes data as a single array of connections, which it scans once per query. Despite its simplicity, our algorithm is very versatile. We use it to solve earliest arrival and multi-criteria profile queries. Moreover, we extend it to handle the minimum expected arrival time (MEAT) problem, which incorporates stochastic delays on the vehicles and asks for a set of (alternative) journeys that in its entirety minimizes the user’s expected arrival time at the destination. Our experiments on the dense metropolitan network of London show that CSA computes MEAT queries, our most complex scenario, in 272 ms on average.


Arrival Time Priority Queue Early Arrival Stochastic Delay Transit Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bast, H.: Car or Public Transport – Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. Networks 57(1), 38–52 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berger, A., Delling, D., Gebhardt, A., Müller–Hannemann, M.: Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected. In: ATMOS. OpenAccess Series in Informatics (OASIcs) (2009)Google Scholar
  5. 5.
    Berger, A., Gebhardt, A., Müller–Hannemann, M., Ostrowski, M.: Stochastic Delay Prediction in Large Train Networks. In: ATMOS, pp. 100–111 (2011)Google Scholar
  6. 6.
    Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in Public Transportation Networks. ACM JEA (2012) (to appear)Google Scholar
  7. 7.
    Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. In: ALENEX, pp. 130–140. SIAM (2012)Google Scholar
  8. 8.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 347–361. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Geisberger, R.: Contraction of Timetable Networks with Realistic Transfers. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Goerigk, M., Knoth, M., Müller–Hannemann, M., Schmidt, M., Schöbel, A.: The Price of Robustness in Timetable Information. In: ATMOS, pp. 76–87 (2011)Google Scholar
  12. 12.
    HaCon website (2013),
  13. 13.
    London Data Store,
  14. 14.
    Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM JEA 12(2.4), 1–39 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sommer, C.: Shortest-Path Queries in Static Networks (2012) (submitted), Preprint available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations